Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):2018–2028. doi: 10.1016/S0006-3495(01)76172-3

Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP).

C A Combs 1, R S Balaban 1
PMCID: PMC1301391  PMID: 11259315

Abstract

Reduced nicotine adenine dinucleotide (NADH) is a key metabolite involved in cellular energy conversion and many redox reactions. We describe the use of confocal microscopy in conjunction with enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH as a topological assay of NADH generation capacity within living cardiac myocytes. Quantitative validation of this approach was performed using a dehydrogenase system, in vitro. In intact cells the NADH ED-FRAP was sensitive to temperature (Q(10) of 2.5) and to dehydrogenase activation by dichloroacetate or cAMP (twofold increase for each). In addition, NADH ED-FRAP was correlated with flavin adenine dinucleotide (FAD(+)) fluorescence. These data, coupled with the cellular patterns of NADH ED-FRAP changes with dehydrogenase stimulation, suggest that NADH ED-FRAP is localized to the mitochondria. These results suggest that ED-FRAP enables measurement of regional dynamics of mitochondrial NADH production in intact cells, thus providing information regarding region-specific intracellular redox reactions and energy metabolism.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adisa A. O., Odutuga A. A. Changes in the activities of three diagnostic enzymes in the heart of rats following the consumption of diets deficient in zinc and essential fatty acids. Biochem Mol Biol Int. 1998 Oct;46(3):571–576. doi: 10.1080/15216549800204092. [DOI] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balaban R. S., Mootha V. K., Arai A. Spectroscopic determination of cytochrome c oxidase content in tissues containing myoglobin or hemoglobin. Anal Biochem. 1996 Jun 1;237(2):274–278. doi: 10.1006/abio.1996.0239. [DOI] [PubMed] [Google Scholar]
  4. Balaban R. S. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol. 1990 Mar;258(3 Pt 1):C377–C389. doi: 10.1152/ajpcell.1990.258.3.C377. [DOI] [PubMed] [Google Scholar]
  5. Bersin R. M., Stacpoole P. W. Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J. 1997 Nov;134(5 Pt 1):841–855. doi: 10.1016/s0002-8703(97)80007-5. [DOI] [PubMed] [Google Scholar]
  6. Chacon E., Reece J. M., Nieminen A. L., Zahrebelski G., Herman B., Lemasters J. J. Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia: a multiparameter digitized confocal microscopic study. Biophys J. 1994 Apr;66(4):942–952. doi: 10.1016/S0006-3495(94)80904-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chance B., Salkovitz I. A., Kovach A. G. Kinetics of mitochondrial flavoprotein and pyridine nucleotide in perfused heart. Am J Physiol. 1972 Jul;223(1):207–218. doi: 10.1152/ajplegacy.1972.223.1.207. [DOI] [PubMed] [Google Scholar]
  8. Depre C., Ponchaut S., Deprez J., Maisin L., Hue L. Cyclic AMP suppresses the inhibition of glycolysis by alternative oxidizable substrates in the heart. J Clin Invest. 1998 Jan 15;101(2):390–397. doi: 10.1172/JCI1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eng J., Lynch R. M., Balaban R. S. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J. 1989 Apr;55(4):621–630. doi: 10.1016/S0006-3495(89)82859-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Erecińska M., Wilson D. F., Nishiki K. Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model. Am J Physiol. 1978 Mar;234(3):C82–C89. doi: 10.1152/ajpcell.1978.234.3.C82. [DOI] [PubMed] [Google Scholar]
  11. Genova M. L., Castelluccio C., Fato R., Parenti Castelli G., Merlo Pich M., Formiggini G., Bovina C., Marchetti M., Lenaz G. Major changes in complex I activity in mitochondria from aged rats may not be detected by direct assay of NADH:coenzyme Q reductase. Biochem J. 1995 Oct 1;311(Pt 1):105–109. doi: 10.1042/bj3110105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Icenogle R. D., Elson E. L. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. I. Theory and FCS measurements. Biopolymers. 1983 Aug;22(8):1919–1948. doi: 10.1002/bip.360220808. [DOI] [PubMed] [Google Scholar]
  13. Jameson D. M., Thomas V., Zhou D. M. Time-resolved fluorescence studies on NADH bound to mitochondrial malate dehydrogenase. Biochim Biophys Acta. 1989 Feb 2;994(2):187–190. doi: 10.1016/0167-4838(89)90159-3. [DOI] [PubMed] [Google Scholar]
  14. Kunz W. S., Kunz W. Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. Biochim Biophys Acta. 1985 Sep 6;841(3):237–246. doi: 10.1016/0304-4165(85)90064-9. [DOI] [PubMed] [Google Scholar]
  15. Link G., Saada A., Pinson A., Konijn A. M., Hershko C. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J Lab Clin Med. 1998 May;131(5):466–474. doi: 10.1016/s0022-2143(98)90148-2. [DOI] [PubMed] [Google Scholar]
  16. Lucas D. T., Szweda L. I. Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6689–6693. doi: 10.1073/pnas.96.12.6689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
  18. Nagai Y., Miyazaki M., Aoki R., Zama T., Inouye S., Hirose K., Iino M., Hagiwara M. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol. 2000 Mar;18(3):313–316. doi: 10.1038/73767. [DOI] [PubMed] [Google Scholar]
  19. Nuutinen E. M. Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart. Basic Res Cardiol. 1984 Jan-Feb;79(1):49–58. doi: 10.1007/BF01935806. [DOI] [PubMed] [Google Scholar]
  20. Palmer J. W., Tandler B., Hoppel C. L. Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. Arch Biochem Biophys. 1985 Feb 1;236(2):691–702. doi: 10.1016/0003-9861(85)90675-7. [DOI] [PubMed] [Google Scholar]
  21. Patel M. S., Roche T. E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990 Nov;4(14):3224–3233. doi: 10.1096/fasebj.4.14.2227213. [DOI] [PubMed] [Google Scholar]
  22. Poston J. M., Parenteau G. L. Biochemical effects of ischemia on isolated, perfused rat heart tissues. Arch Biochem Biophys. 1992 May 15;295(1):35–41. doi: 10.1016/0003-9861(92)90484-e. [DOI] [PubMed] [Google Scholar]
  23. Romashko D. N., Marban E., O'Rourke B. Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1618–1623. doi: 10.1073/pnas.95.4.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rutter G. A., Rizzuto R. Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci. 2000 May;25(5):215–221. doi: 10.1016/s0968-0004(00)01585-1. [DOI] [PubMed] [Google Scholar]
  25. SHONK C. E., BOXER G. E. ENZYME PATTERNS IN HUMAN TISSUES. I. METHODS FOR THE DETERMINATION OF GLYCOLYTIC ENZYMES. Cancer Res. 1964 May;24:709–721. [PubMed] [Google Scholar]
  26. Saks V. A., Belikova Y. O., Kuznetsov A. V. In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta. 1991 Jul 8;1074(2):302–311. doi: 10.1016/0304-4165(91)90168-g. [DOI] [PubMed] [Google Scholar]
  27. Scales D. J. III. Three-dimensional electron microscopy of mammalian cardiac sarcoplasmic reticulum at 80 kV. J Ultrastruct Res. 1983 Apr;83(1):1–9. doi: 10.1016/s0022-5320(83)90059-x. [DOI] [PubMed] [Google Scholar]
  28. Seymour A. M., Chatham J. C. The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity. J Mol Cell Cardiol. 1997 Oct;29(10):2771–2778. doi: 10.1006/jmcc.1997.0512. [DOI] [PubMed] [Google Scholar]
  29. Shimada T., Horita K., Murakami M., Ogura R. Morphological studies of different mitochondrial populations in monkey myocardial cells. Cell Tissue Res. 1984;238(3):577–582. doi: 10.1007/BF00219874. [DOI] [PubMed] [Google Scholar]
  30. Smith C. L., Zaal K. J., Lippincott-Schwartz J. Looking at the bright side of photobleaching: analysis of intracellular protein dynamics by confocal microscopy. Scanning. 1998 Apr;20(3):147–148. [PubMed] [Google Scholar]
  31. Srivastava D. K., Bernhard S. A. Biophysical chemistry of metabolic reaction sequences in concentrated enzyme solution and in the cell. Annu Rev Biophys Biophys Chem. 1987;16:175–204. doi: 10.1146/annurev.bb.16.060187.001135. [DOI] [PubMed] [Google Scholar]
  32. Sugden M. C., Holness M. J. Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system. FASEB J. 1994 Jan;8(1):54–61. doi: 10.1096/fasebj.8.1.8299890. [DOI] [PubMed] [Google Scholar]
  33. Territo P. R., Mootha V. K., French S. A., Balaban R. S. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol. 2000 Feb;278(2):C423–C435. doi: 10.1152/ajpcell.2000.278.2.C423. [DOI] [PubMed] [Google Scholar]
  34. Wilson D. F. Factors affecting the rate and energetics of mitochondrial oxidative phosphorylation. Med Sci Sports Exerc. 1994 Jan;26(1):37–43. [PubMed] [Google Scholar]
  35. Zonderland M. L., Bär P. R., Reijneveld J. C., Spruijt B. M., Keizer H. A., Glatz J. F. Different metabolic adaptation of heart and skeletal muscles to moderate-intensity treadmill training in the rat. Eur J Appl Physiol Occup Physiol. 1999 Apr;79(5):391–396. doi: 10.1007/s004210050527. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES