Abstract
Calcium currents were recorded in contracting and actively shortening mammalian muscle fibers. In order to characterize the influence of extracellular calcium concentration changes in the small unstirred lumina of the transverse tubular system (TTS) on the time course of the slow L-type calcium current (I(Ca)), we have combined experimental measurements of I(Ca) with quantitative numerical simulations of Ca2+ depletion. I(Ca) was recorded both in calcium-buffered and unbuffered external solutions using the two-microelectrode voltage clamp technique (2-MVC) on short murine toe muscle fibers. A simulation program based on a distributed TTS model was used to calculate the effect of ion depletion in the TTS. The experimental data obtained in a solution where ion depletion is suppressed by a high amount of a calcium buffering agent were used as input data for the simulation. The simulation output was then compared with experimental data from the same fiber obtained in unbuffered solution. Taking this approach, we could quantitatively show that the calculated Ca2+ depletion in the transverse tubular system of contracting mammalian muscle fibers significantly affects the time-dependent decline of Ca2+ currents. From our findings, we conclude that ion depletion in the tubular system may be one of the major effects for the I(Ca) decline measured in isotonic physiological solution under voltage clamp conditions.
Full Text
The Full Text of this article is available as a PDF (553.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Chandler W. K., Hodgkin A. L. The kinetics of mechanical activation in frog muscle. J Physiol. 1969 Sep;204(1):207–230. doi: 10.1113/jphysiol.1969.sp008909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Costantin L. L., Peachey L. D. Radial spread of contraction in frog muscle fibres. J Physiol. 1969 Sep;204(1):231–257. doi: 10.1113/jphysiol.1969.sp008910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Peachey L. D. Reconstruction of the action potential of frog sartorius muscle. J Physiol. 1973 Nov;235(1):103–131. doi: 10.1113/jphysiol.1973.sp010380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W., Fink R., Palade P. T. Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. J Physiol. 1981 Mar;312:177–207. doi: 10.1113/jphysiol.1981.sp013623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W., Palade P. T. Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol. 1981 Mar;312:159–176. doi: 10.1113/jphysiol.1981.sp013622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amsellem J., Delorme R., Souchier C., Ojeda C. Transverse-axial tubular system in guinea pig ventricular cardiomyocyte: 3D reconstruction, quantification and its possible role in K+ accumulation-depletion phenomenon in single cells. Biol Cell. 1995;85(1):43–54. [PubMed] [Google Scholar]
- Barry P. H., Adrian R. H. Slow conductance changes due to potassium depletion in the transverse tubules of frog muscle fibers during hyperpolarizing pulses. J Membr Biol. 1973;14(3):243–292. doi: 10.1007/BF01868081. [DOI] [PubMed] [Google Scholar]
- Beaty G. N., Stefani E. Inward calcium current in twitch muscle fibres of the frog [proceedings]. J Physiol. 1976 Sep;260(2):27P–27P. [PubMed] [Google Scholar]
- Blatter L. A., Niggli E. Confocal near-membrane detection of calcium in cardiac myocytes. Cell Calcium. 1998 May;23(5):269–279. doi: 10.1016/s0143-4160(98)90023-9. [DOI] [PubMed] [Google Scholar]
- Cannell M. B., Allen D. G. Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J. 1984 May;45(5):913–925. doi: 10.1016/S0006-3495(84)84238-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cota G., Nicola Siri L., Stefani E. Calcium channel inactivation in frog (Rana pipiens and Rana moctezuma) skeletal muscle fibres. J Physiol. 1984 Sep;354:99–108. doi: 10.1113/jphysiol.1984.sp015365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cota G., Nicola Siri L., Stefani E. Calcium-channel gating in frog skeletal muscle membrane: effect of temperature. J Physiol. 1983 May;338:395–412. doi: 10.1113/jphysiol.1983.sp014679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cota G., Stefani E. Voltage-dependent inactivation of slow calcium channels in intact twitch muscle fibers of the frog. J Gen Physiol. 1989 Nov;94(5):937–951. doi: 10.1085/jgp.94.5.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dulhunty A. Effect of chloride withdrawal on the geometry of the T-tubules in amphibian and mammalian muscle. J Membr Biol. 1982;67(2):81–90. doi: 10.1007/BF01868650. [DOI] [PubMed] [Google Scholar]
- Egelman D. M., Montague P. R. Calcium dynamics in the extracellular space of mammalian neural tissue. Biophys J. 1999 Apr;76(4):1856–1867. doi: 10.1016/s0006-3495(99)77345-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R. S., Gage P. W. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J Gen Physiol. 1969 Mar;53(3):279–297. doi: 10.1085/jgp.53.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R. S., Mathias R. T., Rae J. S. Measurement, modeling, and analysis of the linear electrical properties of cells. Ann N Y Acad Sci. 1977 Dec 30;303:342–354. [PubMed] [Google Scholar]
- Francini F., Pizza L., Traina G. Inactivation of the slow calcium current in twitch skeletal muscle fibres of the frog. J Physiol. 1992 Mar;448:633–653. doi: 10.1113/jphysiol.1992.sp019062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Francini F., Stefani E. Decay of the slow calcium current in twitch muscle fibers of the frog is influenced by intracellular EGTA. J Gen Physiol. 1989 Nov;94(5):953–969. doi: 10.1085/jgp.94.5.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedrich O., Ehmer T., Fink R. H. Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres. J Physiol. 1999 Jun 15;517(Pt 3):757–770. doi: 10.1111/j.1469-7793.1999.0757s.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage P. W., Eisenberg R. S. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers. J Gen Physiol. 1969 Mar;53(3):265–278. doi: 10.1085/jgp.53.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García J., McKinley K., Appel S. H., Stefani E. Ca2+ current and charge movement in adult single human skeletal muscle fibres. J Physiol. 1992 Aug;454:183–196. doi: 10.1113/jphysiol.1992.sp019259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heiny J. A., Ashcroft F. M., Vergara J. T-system optical signals associated with inward rectification in skeletal muscle. Nature. 1983 Jan 13;301(5896):164–166. doi: 10.1038/301164a0. [DOI] [PubMed] [Google Scholar]
- Hinrichsen C., Dulhunty A. The contractile properties, histochemistry, ultrastructure and electrophysiology of the cricothyroid and posterior cricoarytenoid muscles in the rat. J Muscle Res Cell Motil. 1982 Jun;3(2):169–190. doi: 10.1007/BF00711941. [DOI] [PubMed] [Google Scholar]
- Jafri M. S., Rice J. J., Winslow R. L. Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J. 1998 Mar;74(3):1149–1168. doi: 10.1016/S0006-3495(98)77832-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim A. M., Vergara J. L. Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers. Biophys J. 1998 Oct;75(4):2098–2116. doi: 10.1016/S0006-3495(98)77652-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb G. D., Walsh T. Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. J Physiol. 1987 Dec;393:595–617. doi: 10.1113/jphysiol.1987.sp016843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levis R. A., Mathias R. T., Eisenberg R. S. Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts. Biophys J. 1983 Nov;44(2):225–248. doi: 10.1016/S0006-3495(83)84295-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorković H., Rüdel R. Influence of divalent cations on potassium contracture duration in frog muscle fibres. Pflugers Arch. 1983 Jul;398(2):114–119. doi: 10.1007/BF00581057. [DOI] [PubMed] [Google Scholar]
- Mathias R. T., Eisenberg R. S., Valdiosera R. Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the tubular system. Biophys J. 1977 Jan;17(1):57–93. doi: 10.1016/S0006-3495(77)85627-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miledi R., Parker I., Zhu P. H. Changes in threshold for calcium transients in frog skeletal muscle fibres owing to calcium depletion in the T-tubules. J Physiol. 1983 Nov;344:233–241. doi: 10.1113/jphysiol.1983.sp014936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neely A., Olcese R., Wei X., Birnbaumer L., Stefani E. Ca(2+)-dependent inactivation of a cloned cardiac Ca2+ channel alpha 1 subunit (alpha 1C) expressed in Xenopus oocytes. Biophys J. 1994 Jun;66(6):1895–1903. doi: 10.1016/S0006-3495(94)80983-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
- Sanchez J. A., Stefani E. Inward calcium current in twitch muscle fibres of the frog. J Physiol. 1978 Oct;283:197–209. doi: 10.1113/jphysiol.1978.sp012496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon B. J., Beam K. G. The influence of transverse tubular delays on the kinetics of charge movement in mammalian skeletal muscle. J Gen Physiol. 1985 Jan;85(1):21–42. doi: 10.1085/jgp.85.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siri L. N., Sánchez J. A., Stefani E. Effect of glycerol treatment on the calcium current of frog skeletal muscle. J Physiol. 1980 Aug;305:87–96. doi: 10.1113/jphysiol.1980.sp013351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanfield P. R. A calcium dependent inward current in frog skeletal muscle fibres. Pflugers Arch. 1977 Apr 25;368(3):267–270. doi: 10.1007/BF00585206. [DOI] [PubMed] [Google Scholar]
- Sánchez J. A., Stefani E. Kinetic properties of calcium channels of twitch muscle fibres of the frog. J Physiol. 1983 Apr;337:1–17. doi: 10.1113/jphysiol.1983.sp014607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uttenweiler D., Weber C., Fink R. H. Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers. Biophys J. 1998 Apr;74(4):1640–1653. doi: 10.1016/S0006-3495(98)77877-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valdiosera R., Clausen C., Eisenberg R. S. Circuit models of the passive electrical properties of frog skeletal muscle fibers. J Gen Physiol. 1974 Apr;63(4):432–459. doi: 10.1085/jgp.63.4.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valdiosera R., Clausen C., Eisenberg R. S. Impedance of frog skeletal muscle fibers in various solutions. J Gen Physiol. 1974 Apr;63(4):460–491. doi: 10.1085/jgp.63.4.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
