Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2110–2119. doi: 10.1016/S0006-3495(01)76184-X

In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis.

P Condorelli 1, S C George 1
PMCID: PMC1301403  PMID: 11325714

Abstract

Free nitric oxide (NO) activates soluble guanylate cyclase (sGC), an enzyme, within both pulmonary and vascular smooth muscle. sGC catalyzes the cyclization of guanosine 5'-triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP). Binding rates of NO to the ferrous heme(s) of sGC have been measured in vitro. However, a missing link in our understanding of the control mechanism of sGC by NO is a comprehensive in vivo kinetic analysis. Available literature data suggests that NO dissociation from the heme center of sGC is accelerated by its interaction with one or more cofactors in vivo. We present a working model for sGC activation and NO consumption in vivo. Our model predicts that NO influences the cGMP formation rate over a concentration range of approximately 5-100 nM (apparent Michaelis constant approximately 23 nM), with Hill coefficients between 1.1 and 1.5. The apparent reaction order for NO consumption by sGC is dependent on NO concentration, and varies between 0 and 1.5. Finally, the activation of sGC (half-life approximately 1-2 s) is much more rapid than deactivation (approximately 50 s). We conclude that control of sGC in vivo is most likely ultra-sensitive, and that activation in vivo occurs at lower NO concentrations than previously reported.

Full Text

The Full Text of this article is available as a PDF (146.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman J. S., Koppenol W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996 Nov;271(5 Pt 1):C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424. [DOI] [PubMed] [Google Scholar]
  2. Brandish P. E., Buechler W., Marletta M. A. Regeneration of the ferrous heme of soluble guanylate cyclase from the nitric oxide complex: acceleration by thiols and oxyhemoglobin. Biochemistry. 1998 Dec 1;37(48):16898–16907. doi: 10.1021/bi9814989. [DOI] [PubMed] [Google Scholar]
  3. Denninger J. W., Marletta M. A. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta. 1999 May 5;1411(2-3):334–350. doi: 10.1016/s0005-2728(99)00024-9. [DOI] [PubMed] [Google Scholar]
  4. Eu J. P., Liu L., Zeng M., Stamler J. S. An apoptotic model for nitrosative stress. Biochemistry. 2000 Feb 8;39(5):1040–1047. doi: 10.1021/bi992046e. [DOI] [PubMed] [Google Scholar]
  5. Ferrell J. E., Jr, Machleder E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998 May 8;280(5365):895–898. doi: 10.1126/science.280.5365.895. [DOI] [PubMed] [Google Scholar]
  6. Hogg N., Singh R. J., Kalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett. 1996 Mar 18;382(3):223–228. doi: 10.1016/0014-5793(96)00086-5. [DOI] [PubMed] [Google Scholar]
  7. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ignarro L. J., Degnan J. N., Baricos W. H., Kadowitz P. J., Wolin M. S. Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim Biophys Acta. 1982 Sep 17;718(1):49–59. doi: 10.1016/0304-4165(82)90008-3. [DOI] [PubMed] [Google Scholar]
  9. Ignarro L. J., Harbison R. G., Wood K. S., Kadowitz P. J. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J Pharmacol Exp Ther. 1986 Jun;237(3):893–900. [PubMed] [Google Scholar]
  10. Kharitonov V. G., Russwurm M., Magde D., Sharma V. S., Koesling D. Dissociation of nitric oxide from soluble guanylate cyclase. Biochem Biophys Res Commun. 1997 Oct 9;239(1):284–286. doi: 10.1006/bbrc.1997.7470. [DOI] [PubMed] [Google Scholar]
  11. Kharitonov V. G., Sharma V. S., Magde D., Koesling D. Kinetics of nitric oxide dissociation from five- and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase. Biochemistry. 1997 Jun 3;36(22):6814–6818. doi: 10.1021/bi970201o. [DOI] [PubMed] [Google Scholar]
  12. Koshland D. E., Jr The era of pathway quantification. Science. 1998 May 8;280(5365):852–853. doi: 10.1126/science.280.5365.852. [DOI] [PubMed] [Google Scholar]
  13. Makino R., Matsuda H., Obayashi E., Shiro Y., Iizuka T., Hori H. EPR characterization of axial bond in metal center of native and cobalt-substituted guanylate cyclase. J Biol Chem. 1999 Mar 19;274(12):7714–7723. doi: 10.1074/jbc.274.12.7714. [DOI] [PubMed] [Google Scholar]
  14. Malinski T., Taha Z., Grunfeld S., Patton S., Kapturczak M., Tomboulian P. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1076–1082. doi: 10.1006/bbrc.1993.1735. [DOI] [PubMed] [Google Scholar]
  15. Margulis A., Sitaramayya A. Rate of deactivation of nitric oxide-stimulated soluble guanylate cyclase: influence of nitric oxide scavengers and calcium. Biochemistry. 2000 Feb 8;39(5):1034–1039. doi: 10.1021/bi992040p. [DOI] [PubMed] [Google Scholar]
  16. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  17. Parkinson S. J., Jovanovic A., Jovanovic S., Wagner F., Terzic A., Waldman S. A. Regulation of nitric oxide-responsive recombinant soluble guanylyl cyclase by calcium. Biochemistry. 1999 May 18;38(20):6441–6448. doi: 10.1021/bi990154v. [DOI] [PubMed] [Google Scholar]
  18. Stone J. R., Marletta M. A. Heme stoichiometry of heterodimeric soluble guanylate cyclase. Biochemistry. 1995 Nov 14;34(45):14668–14674. doi: 10.1021/bi00045a007. [DOI] [PubMed] [Google Scholar]
  19. Stone J. R., Marletta M. A. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry. 1994 May 10;33(18):5636–5640. doi: 10.1021/bi00184a036. [DOI] [PubMed] [Google Scholar]
  20. Stone J. R., Marletta M. A. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry. 1996 Jan 30;35(4):1093–1099. doi: 10.1021/bi9519718. [DOI] [PubMed] [Google Scholar]
  21. Stone J. R., Marletta M. A. Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chem Biol. 1998 May;5(5):255–261. doi: 10.1016/s1074-5521(98)90618-4. [DOI] [PubMed] [Google Scholar]
  22. Tomita T., Ogura T., Tsuyama S., Imai Y., Kitagawa T. Effects of GTP on bound nitric oxide of soluble guanylate cyclase probed by resonance Raman spectroscopy. Biochemistry. 1997 Aug 19;36(33):10155–10160. doi: 10.1021/bi9710131. [DOI] [PubMed] [Google Scholar]
  23. Vaughn M. W., Kuo L., Liao J. C. Effective diffusion distance of nitric oxide in the microcirculation. Am J Physiol. 1998 May;274(5 Pt 2):H1705–H1714. doi: 10.1152/ajpheart.1998.274.5.H1705. [DOI] [PubMed] [Google Scholar]
  24. Vaughn M. W., Kuo L., Liao J. C. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol. 1998 Jun;274(6 Pt 2):H2163–H2176. doi: 10.1152/ajpheart.1998.274.6.H2163. [DOI] [PubMed] [Google Scholar]
  25. Wink D. A., Mitchell J. B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998 Sep;25(4-5):434–456. doi: 10.1016/s0891-5849(98)00092-6. [DOI] [PubMed] [Google Scholar]
  26. Wong P. S., Hyun J., Fukuto J. M., Shirota F. N., DeMaster E. G., Shoeman D. W., Nagasawa H. T. Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry. 1998 Apr 21;37(16):5362–5371. doi: 10.1021/bi973153g. [DOI] [PubMed] [Google Scholar]
  27. Zhao Y., Brandish P. E., Ballou D. P., Marletta M. A. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14753–14758. doi: 10.1073/pnas.96.26.14753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhao Y., Hoganson C., Babcock G. T., Marletta M. A. Structural changes in the heme proximal pocket induced by nitric oxide binding to soluble guanylate cyclase. Biochemistry. 1998 Sep 8;37(36):12458–12464. doi: 10.1021/bi9811563. [DOI] [PubMed] [Google Scholar]
  29. Zhao Y., Marletta M. A. Localization of the heme binding region in soluble guanylate cyclase. Biochemistry. 1997 Dec 16;36(50):15959–15964. doi: 10.1021/bi971825x. [DOI] [PubMed] [Google Scholar]
  30. Zhao Y., Schelvis J. P., Babcock G. T., Marletta M. A. Identification of histidine 105 in the beta1 subunit of soluble guanylate cyclase as the heme proximal ligand. Biochemistry. 1998 Mar 31;37(13):4502–4509. doi: 10.1021/bi972686m. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES