Abstract
To investigate the structural basis for membrane interactions that occur between Lyn tyrosine kinase and IgE-Fc(epsilon)RI or other components of lipid rafts, we prepared a green fluorescent protein analog of Lyn (PM-EGFP) and used cross-correlation analysis to quantify co-redistributions of aggregates that occur after IgE-Fc(epsilon)RI is cross-linked on the cell surface. PM-EGFP, which contains minimally the palmitoylation and myristoylation sites on Lyn, was compared with another inner leaflet probe, EGFP-GG, which contains a prenylation site and a polybasic sequence similar to K-ras. Confocal fluorescence microscopy was used to examine co-redistributions of these inner leaflet components with IgE-Fc(epsilon)RI and outer leaflet raft components, ganglioside GD1b and glycosylphosphotidylinositol-linked Thy-1, under conditions where the latter were cross-linked externally to form large patches at the cell surface. The cross-correlation analysis was developed and characterized with simulations representing cell surface distributions, and parameters from the cross-correlation curves, rho(o) (peak height) and A (peak area), were shown to be reliable measures of the extent of co-redistributed aggregates and their size. Cross-correlation analysis was then applied to quantify co-redistributions of the fluorescently labeled inner and outer leaflet components on RBL-2H3 cells. As visually observed and parameterized in this manner, PM-EGFP was found to co-redistribute with lipid rafts significantly more than EGFP-GG or an endogenous prenylated protein, Cdc42. These quantitative results are consistent with previous analyses of Lyn co-redistributions and support the hypothesis that the functionally important interaction of Lyn with cross-linked IgE- Fc(epsilon)RI is due to their mutual co-association with lipid rafts.
Full Text
The Full Text of this article is available as a PDF (290.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baird B., Sheets E. D., Holowka D. How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys Chem. 1999 Dec 13;82(2-3):109–119. doi: 10.1016/s0301-4622(99)00110-6. [DOI] [PubMed] [Google Scholar]
- Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
- Brown D. A., London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
- Field K. A., Holowka D., Baird B. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J Biol Chem. 1997 Feb 14;272(7):4276–4280. doi: 10.1074/jbc.272.7.4276. [DOI] [PubMed] [Google Scholar]
- Field K. A., Holowka D., Baird B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9201–9205. doi: 10.1073/pnas.92.20.9201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fridriksson E. K., Shipkova P. A., Sheets E. D., Holowka D., Baird B., McLafferty F. W. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry. 1999 Jun 22;38(25):8056–8063. doi: 10.1021/bi9828324. [DOI] [PubMed] [Google Scholar]
- Ge M., Field K. A., Aneja R., Holowka D., Baird B., Freed J. H. Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophys J. 1999 Aug;77(2):925–933. doi: 10.1016/S0006-3495(99)76943-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghomashchi F., Zhang X., Liu L., Gelb M. H. Binding of prenylated and polybasic peptides to membranes: affinities and intervesicle exchange. Biochemistry. 1995 Sep 19;34(37):11910–11918. doi: 10.1021/bi00037a032. [DOI] [PubMed] [Google Scholar]
- Glomset J. A., Farnsworth C. C. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol. 1994;10:181–205. doi: 10.1146/annurev.cb.10.110194.001145. [DOI] [PubMed] [Google Scholar]
- Guo N. H., Her G. R., Reinhold V. N., Brennan M. J., Siraganian R. P., Ginsburg V. Monoclonal antibody AA4, which inhibits binding of IgE to high affinity receptors on rat basophilic leukemia cells, binds to novel alpha-galactosyl derivatives of ganglioside GD1b. J Biol Chem. 1989 Aug 5;264(22):13267–13272. [PubMed] [Google Scholar]
- Holowka D., Sheets E. D., Baird B. Interactions between Fc(epsilon)RI and lipid raft components are regulated by the actin cytoskeleton. J Cell Sci. 2000 Mar;113(Pt 6):1009–1019. doi: 10.1242/jcs.113.6.1009. [DOI] [PubMed] [Google Scholar]
- James G. L., Goldstein J. L., Brown M. S. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem. 1995 Mar 17;270(11):6221–6226. doi: 10.1074/jbc.270.11.6221. [DOI] [PubMed] [Google Scholar]
- Janes P. W., Ley S. C., Magee A. I., Kabouridis P. S. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000 Feb;12(1):23–34. doi: 10.1006/smim.2000.0204. [DOI] [PubMed] [Google Scholar]
- Kinet J. P. The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol. 1999;17:931–972. doi: 10.1146/annurev.immunol.17.1.931. [DOI] [PubMed] [Google Scholar]
- Leventis R., Silvius J. R. Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B. Biochemistry. 1998 May 19;37(20):7640–7648. doi: 10.1021/bi973077h. [DOI] [PubMed] [Google Scholar]
- Metzger H. It's spring, and thoughts turn to...allergies. Cell. 1999 Apr 30;97(3):287–290. doi: 10.1016/s0092-8674(00)80738-2. [DOI] [PubMed] [Google Scholar]
- Montixi C., Langlet C., Bernard A. M., Thimonier J., Dubois C., Wurbel M. A., Chauvin J. P., Pierres M., He H. T. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 1998 Sep 15;17(18):5334–5348. doi: 10.1093/emboj/17.18.5334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen N. O., Brown C., Kaminski A., Rocheleau J., Srivastava M., Wiseman P. W. Analysis of membrane protein cluster densities and sizes in situ by image correlation spectroscopy. Faraday Discuss. 1998;(111):289–343. doi: 10.1039/a806677i. [DOI] [PubMed] [Google Scholar]
- Pierini L., Holowka D., Baird B. Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling. J Cell Biol. 1996 Sep;134(6):1427–1439. doi: 10.1083/jcb.134.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resh M. D. Regulation of cellular signalling by fatty acid acylation and prenylation of signal transduction proteins. Cell Signal. 1996 Sep;8(6):403–412. doi: 10.1016/s0898-6568(96)00088-5. [DOI] [PubMed] [Google Scholar]
- Rider L. G., Raben N., Miller L., Jelsema C. The cDNAs encoding two forms of the LYN protein tyrosine kinase are expressed in rat mast cells and human myeloid cells. Gene. 1994 Jan 28;138(1-2):219–222. doi: 10.1016/0378-1119(94)90811-7. [DOI] [PubMed] [Google Scholar]
- Schroeder R. J., Ahmed S. N., Zhu Y., London E., Brown D. A. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem. 1998 Jan 9;273(2):1150–1157. doi: 10.1074/jbc.273.2.1150. [DOI] [PubMed] [Google Scholar]
- Sheets E. D., Holowka D., Baird B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcepsilonRI and their association with detergent-resistant membranes. J Cell Biol. 1999 May 17;145(4):877–887. doi: 10.1083/jcb.145.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheets E. D., Holowka D., Baird B. Membrane organization in immunoglobulin E receptor signaling. Curr Opin Chem Biol. 1999 Feb;3(1):95–99. doi: 10.1016/s1367-5931(99)80017-9. [DOI] [PubMed] [Google Scholar]
- Shenoy-Scaria A. M., Gauen L. K., Kwong J., Shaw A. S., Lublin D. M. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol. 1993 Oct;13(10):6385–6392. doi: 10.1128/mcb.13.10.6385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stauffer T. P., Meyer T. Compartmentalized IgE receptor-mediated signal transduction in living cells. J Cell Biol. 1997 Dec 15;139(6):1447–1454. doi: 10.1083/jcb.139.6.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subramanian K., Holowka D., Baird B., Goldstein B. The Fc segment of IgE influences the kinetics of dissociation of a symmetrical bivalent ligand from cyclic dimeric complexes. Biochemistry. 1996 Apr 30;35(17):5518–5527. doi: 10.1021/bi9523522. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
- Vonakis B. M., Chen H., Haleem-Smith H., Metzger H. The unique domain as the site on Lyn kinase for its constitutive association with the high affinity receptor for IgE. J Biol Chem. 1997 Sep 19;272(38):24072–24080. doi: 10.1074/jbc.272.38.24072. [DOI] [PubMed] [Google Scholar]
- Webb Y., Hermida-Matsumoto L., Resh M. D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem. 2000 Jan 7;275(1):261–270. doi: 10.1074/jbc.275.1.261. [DOI] [PubMed] [Google Scholar]
- Xavier R., Seed B. Membrane compartmentation and the response to antigen. Curr Opin Immunol. 1999 Jun;11(3):265–269. doi: 10.1016/s0952-7915(99)80043-0. [DOI] [PubMed] [Google Scholar]
- Yamane H. K., Farnsworth C. C., Xie H. Y., Evans T., Howald W. N., Gelb M. H., Glomset J. A., Clarke S., Fung B. K. Membrane-binding domain of the small G protein G25K contains an S-(all-trans-geranylgeranyl)cysteine methyl ester at its carboxyl terminus. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):286–290. doi: 10.1073/pnas.88.1.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang W., Trible R. P., Samelson L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 1998 Aug;9(2):239–246. doi: 10.1016/s1074-7613(00)80606-8. [DOI] [PubMed] [Google Scholar]
- van't Hof W., Resh M. D. Rapid plasma membrane anchoring of newly synthesized p59fyn: selective requirement for NH2-terminal myristoylation and palmitoylation at cysteine-3. J Cell Biol. 1997 Mar 10;136(5):1023–1035. doi: 10.1083/jcb.136.5.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]