Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2140–2151. doi: 10.1016/S0006-3495(01)76187-5

Localization and kinetics of protein kinase C-epsilon anchoring in cardiac myocytes.

S L Robia 1, J Ghanta 1, V G Robu 1, J W Walker 1
PMCID: PMC1301406  PMID: 11325717

Abstract

Protein kinase C-epsilon (PKC-epsilon) plays a central role in cardiac cell signaling, but mechanisms of translocation and anchoring upon activation are poorly understood. Conventional PKC isoforms rely on a rapid Ca2+-mediated recruitment to cell membranes, but this mechanism cannot be employed by PKC-epsilon or other PKC isoforms lacking a Ca2+-binding domain. In this study, we used recombinant green fluorescent protein (GFP) fusion constructs and confocal microscopy to examine the localization, kinetics, and reversibility of PKC-epsilon anchoring in permeabilized rat cardiac myocytes. PKC-epsilon-GFP bound with a striated pattern that co-localized with alpha-actinin, a marker of the Z-line of the sarcomere. Binding required activation of PKC and occurred slowly but reversibly with apparent rate constants of k(on) = 4.6 +/- 1.2 x 10(3) M(-1) x s(-1) and k(off) = 1.4 +/- 0.5 x 10(-3) s(-1) (t1/2 = 8 min) as determined by fluorescence recovery after photobleaching and by perfusion experiments. A truncated construct composed of the N-terminal 144-amino-acid variable region of PKC-epsilon (epsilonV1-GFP), but not an analogous N-terminal domain of PKC-delta, mimicked the Z-line decoration and slow binding rate of the full-length enzyme. These findings suggest that the epsilonV1 domain is important in determining PKC-epsilon localization and translocation kinetics in cardiac muscle. Moreover, PKC-epsilon translocation is not a diffusion-controlled binding process but instead may be limited by intramolecular conformational changes within the V1 domain. The k(off) for epsilonV1-GFP was two- to threefold faster than for full-length enzyme, indicating that other domains in PKC-epsilon contribute to anchoring by prolonging the bound state.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert C. J., Ford D. A. Protein kinase C translocation and PKC-dependent protein phosphorylation during myocardial ischemia. Am J Physiol. 1999 Feb;276(2 Pt 2):H642–H650. doi: 10.1152/ajpheart.1999.276.2.H642. [DOI] [PubMed] [Google Scholar]
  2. Brown E. B., Wu E. S., Zipfel W., Webb W. W. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys J. 1999 Nov;77(5):2837–2849. doi: 10.1016/S0006-3495(99)77115-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen M. V., Baines C. P., Downey J. M. Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol. 2000;62:79–109. doi: 10.1146/annurev.physiol.62.1.79. [DOI] [PubMed] [Google Scholar]
  4. Csukai M., Chen C. H., De Matteis M. A., Mochly-Rosen D. The coatomer protein beta'-COP, a selective binding protein (RACK) for protein kinase Cepsilon. J Biol Chem. 1997 Nov 14;272(46):29200–29206. doi: 10.1074/jbc.272.46.29200. [DOI] [PubMed] [Google Scholar]
  5. Disatnik M. H., Buraggi G., Mochly-Rosen D. Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res. 1994 Feb;210(2):287–297. doi: 10.1006/excr.1994.1041. [DOI] [PubMed] [Google Scholar]
  6. Dorn G. W., 2nd, Souroujon M. C., Liron T., Chen C. H., Gray M. O., Zhou H. Z., Csukai M., Wu G., Lorenz J. N., Mochly-Rosen D. Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12798–12803. doi: 10.1073/pnas.96.22.12798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Endo M., Iino M. Specific perforation of muscle cell membranes with preserved SR functions by saponin treatment. J Muscle Res Cell Motil. 1980 Mar;1(1):89–100. doi: 10.1007/BF00711927. [DOI] [PubMed] [Google Scholar]
  8. He J. Q., Pi Y., Walker J. W., Kamp T. J. Endothelin-1 and photoreleased diacylglycerol increase L-type Ca2+ current by activation of protein kinase C in rat ventricular myocytes. J Physiol. 2000 May 1;524(Pt 3):807–820. doi: 10.1111/j.1469-7793.2000.00807.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang X. P., Pi Y., Lokuta A. J., Greaser M. L., Walker J. W. Arachidonic acid stimulates protein kinase C-epsilon redistribution in heart cells. J Cell Sci. 1997 Jul;110(Pt 14):1625–1634. doi: 10.1242/jcs.110.14.1625. [DOI] [PubMed] [Google Scholar]
  10. Huang X. P., Sreekumar R., Patel J. R., Walker J. W. Response of cardiac myocytes to a ramp increase of diacylglycerol generated by photolysis of a novel caged diacylglycerol. Biophys J. 1996 May;70(5):2448–2457. doi: 10.1016/S0006-3495(96)79816-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jaken S. Protein kinase C isozymes and substrates. Curr Opin Cell Biol. 1996 Apr;8(2):168–173. doi: 10.1016/s0955-0674(96)80062-7. [DOI] [PubMed] [Google Scholar]
  12. Kawamura S., Yoshida K., Miura T., Mizukami Y., Matsuzaki M. Ischemic preconditioning translocates PKC-delta and -epsilon, which mediate functional protection in isolated rat heart. Am J Physiol. 1998 Dec;275(6 Pt 2):H2266–H2271. doi: 10.1152/ajpheart.1998.275.6.H2266. [DOI] [PubMed] [Google Scholar]
  13. Kiley S. C., Jaken S., Whelan R., Parker P. J. Intracellular targeting of protein kinase C isoenzymes: functional implications. Biochem Soc Trans. 1995 Aug;23(3):601–605. doi: 10.1042/bst0230601. [DOI] [PubMed] [Google Scholar]
  14. Lawson C. S., Downey J. M. Preconditioning: state of the art myocardial protection. Cardiovasc Res. 1993 Apr;27(4):542–550. doi: 10.1093/cvr/27.4.542. [DOI] [PubMed] [Google Scholar]
  15. Medkova M., Cho W. Interplay of C1 and C2 domains of protein kinase C-alpha in its membrane binding and activation. J Biol Chem. 1999 Jul 9;274(28):19852–19861. doi: 10.1074/jbc.274.28.19852. [DOI] [PubMed] [Google Scholar]
  16. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995 Apr 14;268(5208):247–251. doi: 10.1126/science.7716516. [DOI] [PubMed] [Google Scholar]
  17. Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986 Nov;74(5):1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
  18. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  19. Oancea E., Meyer T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell. 1998 Oct 30;95(3):307–318. doi: 10.1016/s0092-8674(00)81763-8. [DOI] [PubMed] [Google Scholar]
  20. Ono Y., Fujii T., Igarashi K., Kuno T., Tanaka C., Kikkawa U., Nishizuka Y. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4868–4871. doi: 10.1073/pnas.86.13.4868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Papadopoulos S., Jürgens K. D., Gros G. Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction. Biophys J. 2000 Oct;79(4):2084–2094. doi: 10.1016/S0006-3495(00)76456-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pi Y., Sreekumar R., Huang X., Walker J. W. Positive inotropy mediated by diacylglycerol in rat ventricular myocytes. Circ Res. 1997 Jul;81(1):92–100. doi: 10.1161/01.res.81.1.92. [DOI] [PubMed] [Google Scholar]
  23. Ping P., Zhang J., Qiu Y., Tang X. L., Manchikalapudi S., Cao X., Bolli R. Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res. 1997 Sep;81(3):404–414. doi: 10.1161/01.res.81.3.404. [DOI] [PubMed] [Google Scholar]
  24. Prekeris R., Mayhew M. W., Cooper J. B., Terrian D. M. Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. J Cell Biol. 1996 Jan;132(1-2):77–90. doi: 10.1083/jcb.132.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Qiu Y., Ping P., Tang X. L., Manchikalapudi S., Rizvi A., Zhang J., Takano H., Wu W. J., Teschner S., Bolli R. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved. J Clin Invest. 1998 May 15;101(10):2182–2198. doi: 10.1172/JCI1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rybin V. O., Steinberg S. F. Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res. 1994 Feb;74(2):299–309. doi: 10.1161/01.res.74.2.299. [DOI] [PubMed] [Google Scholar]
  27. Soumpasis D. M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J. 1983 Jan;41(1):95–97. doi: 10.1016/S0006-3495(83)84410-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Swaminathan R., Hoang C. P., Verkman A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J. 1997 Apr;72(4):1900–1907. doi: 10.1016/S0006-3495(97)78835-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang Y., Ashraf M. Activation of alpha1-adrenergic receptor during Ca2+ pre-conditioning elicits strong protection against Ca2+ overload injury via protein kinase C signaling pathway. J Mol Cell Cardiol. 1998 Nov;30(11):2423–2435. doi: 10.1006/jmcc.1998.0802. [DOI] [PubMed] [Google Scholar]
  30. Yoshida K., Hirata T., Akita Y., Mizukami Y., Yamaguchi K., Sorimachi Y., Ishihara T., Kawashiama S. Translocation of protein kinase C-alpha, delta and epsilon isoforms in ischemic rat heart. Biochim Biophys Acta. 1996 Oct 7;1317(1):36–44. doi: 10.1016/0925-4439(96)00035-x. [DOI] [PubMed] [Google Scholar]
  31. Zhang G., Kazanietz M. G., Blumberg P. M., Hurley J. H. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell. 1995 Jun 16;81(6):917–924. doi: 10.1016/0092-8674(95)90011-x. [DOI] [PubMed] [Google Scholar]
  32. Zhou Q., Ruiz-Lozano P., Martone M. E., Chen J. Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem. 1999 Jul 9;274(28):19807–19813. doi: 10.1074/jbc.274.28.19807. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES