Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2176–2186. doi: 10.1016/S0006-3495(01)76190-5

Actin modifies Ca2+ block of epithelial Na+ channels in planar lipid bilayers.

B K Berdiev 1, R Latorre 1, D J Benos 1, I I Ismailov 1
PMCID: PMC1301409  PMID: 11325720

Abstract

The mechanism by which the cytoskeletal protein actin affects the conductance of amiloride-sensitive epithelial sodium channels (ENaC) was studied in planar lipid bilayers. In the presence of monomeric actin, we found a decrease in the single-channel conductance of alpha-ENaC that did not occur when the internal [Ca2+]free was buffered to <10 nM. An analysis of single-channel kinetics demonstrated that Ca2+ induced the appearance of long-lived closed intervals separating bursts of channel activity, both in the presence and in the absence of actin. In the absence of actin, the duration of these bursts and the time spent by the channel in its open, but not in its short-lived closed state, were inversely proportional to [Ca2+]. This, together with a lengthening of the interburst intervals, translated into a dose-dependent decrease in the single-channel open probability. In contrast, a [Ca2+]-dependent decrease in alpha-ENaC conductance in the presence of actin was accompanied by lengthening of the burst intervals with no significant changes in the open or closed (both short- and long-lived) times. We conclude that Ca2+ acts as a "fast-to-intermediate" blocker when monomeric actin is present, producing a subsequent attenuation of the apparent unitary conductance of the channel.

Full Text

The Full Text of this article is available as a PDF (365.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awayda M. S., Ismailov I. I., Berdiev B. K., Benos D. J. A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Physiol. 1995 Jun;268(6 Pt 1):C1450–C1459. doi: 10.1152/ajpcell.1995.268.6.C1450. [DOI] [PubMed] [Google Scholar]
  2. Berdiev B. K., Karlson K. H., Jovov B., Ripoll P. J., Morris R., Loffing-Cueni D., Halpin P., Stanton B. A., Kleyman T. R., Ismailov I. I. Subunit stoichiometry of a core conduction element in a cloned epithelial amiloride-sensitive Na+ channel. Biophys J. 1998 Nov;75(5):2292–2301. doi: 10.1016/S0006-3495(98)77673-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berdiev B. K., Prat A. G., Cantiello H. F., Ausiello D. A., Fuller C. M., Jovov B., Benos D. J., Ismailov I. I. Regulation of epithelial sodium channels by short actin filaments. J Biol Chem. 1996 Jul 26;271(30):17704–17710. doi: 10.1074/jbc.271.30.17704. [DOI] [PubMed] [Google Scholar]
  4. Bers D. M. A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol. 1982 May;242(5):C404–C408. doi: 10.1152/ajpcell.1982.242.5.C404. [DOI] [PubMed] [Google Scholar]
  5. Brooks S. P., Storey K. B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem. 1992 Feb 14;201(1):119–126. doi: 10.1016/0003-2697(92)90183-8. [DOI] [PubMed] [Google Scholar]
  6. Canessa C. M., Horisberger J. D., Rossier B. C. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 1993 Feb 4;361(6411):467–470. doi: 10.1038/361467a0. [DOI] [PubMed] [Google Scholar]
  7. Canessa C. M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J. D., Rossier B. C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463–467. doi: 10.1038/367463a0. [DOI] [PubMed] [Google Scholar]
  8. Cantiello H. F. Changes in actin filament organization regulate Na+,K(+)-ATPase activity. Role of actin phosphorylation. Ann N Y Acad Sci. 1997 Nov 3;834:559–561. doi: 10.1111/j.1749-6632.1997.tb52318.x. [DOI] [PubMed] [Google Scholar]
  9. Cantiello H. F. Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool. 1997 Dec 1;279(5):425–435. doi: 10.1002/(sici)1097-010x(19971201)279:5<425::aid-jez4>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  10. Cantiello H. F. Role of the actin cytoskeleton on epithelial Na+ channel regulation. Kidney Int. 1995 Oct;48(4):970–984. doi: 10.1038/ki.1995.379. [DOI] [PubMed] [Google Scholar]
  11. Cantiello H. F., Stow J. L., Prat A. G., Ausiello D. A. Actin filaments regulate epithelial Na+ channel activity. Am J Physiol. 1991 Nov;261(5 Pt 1):C882–C888. doi: 10.1152/ajpcell.1991.261.5.C882. [DOI] [PubMed] [Google Scholar]
  12. Carlier M. F. Actin polymerization and ATP hydrolysis. Adv Biophys. 1990;26:51–73. doi: 10.1016/0065-227x(90)90007-g. [DOI] [PubMed] [Google Scholar]
  13. Carlier M. F., Pantaloni D., Evans J. A., Lambooy P. K., Korn E. D., Webb M. R. The hydrolysis of ATP that accompanies actin polymerization is essentially irreversible. FEBS Lett. 1988 Aug 1;235(1-2):211–214. doi: 10.1016/0014-5793(88)81264-x. [DOI] [PubMed] [Google Scholar]
  14. Carlier M. F., Pantaloni D., Korn E. D. Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin. J Biol Chem. 1986 Aug 15;261(23):10778–10784. [PubMed] [Google Scholar]
  15. Carlier M. F., Pantaloni D., Korn E. D. The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis. J Biol Chem. 1986 Aug 15;261(23):10785–10792. [PubMed] [Google Scholar]
  16. Carlier M. F., Pantaloni D., Korn E. D. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin. J Biol Chem. 1987 Mar 5;262(7):3052–3059. [PubMed] [Google Scholar]
  17. Cooper J. A., Buhle E. L., Jr, Walker S. B., Tsong T. Y., Pollard T. D. Kinetic evidence for a monomer activation step in actin polymerization. Biochemistry. 1983 Apr 26;22(9):2193–2202. doi: 10.1021/bi00278a021. [DOI] [PubMed] [Google Scholar]
  18. Cowin P., Burke B. Cytoskeleton-membrane interactions. Curr Opin Cell Biol. 1996 Feb;8(1):56–65. doi: 10.1016/s0955-0674(96)80049-4. [DOI] [PubMed] [Google Scholar]
  19. Estes J. E., Selden L. A., Kinosian H. J., Gershman L. C. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil. 1992 Jun;13(3):272–284. doi: 10.1007/BF01766455. [DOI] [PubMed] [Google Scholar]
  20. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  21. Fuchs E., Yang Y. Crossroads on cytoskeletal highways. Cell. 1999 Sep 3;98(5):547–550. doi: 10.1016/s0092-8674(00)80041-0. [DOI] [PubMed] [Google Scholar]
  22. Green W. N., Weiss L. B., Andersen O. S. Batrachotoxin-modified sodium channels in planar lipid bilayers. Ion permeation and block. J Gen Physiol. 1987 Jun;89(6):841–872. doi: 10.1085/jgp.89.6.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Harrison S. M., Bers D. M. Correction of proton and Ca association constants of EGTA for temperature and ionic strength. Am J Physiol. 1989 Jun;256(6 Pt 1):C1250–C1256. doi: 10.1152/ajpcell.1989.256.6.C1250. [DOI] [PubMed] [Google Scholar]
  24. Hilgemann D. W. Cytoplasmic ATP-dependent regulation of ion transporters and channels: mechanisms and messengers. Annu Rev Physiol. 1997;59:193–220. doi: 10.1146/annurev.physiol.59.1.193. [DOI] [PubMed] [Google Scholar]
  25. Hitchcock S. E. Actin deoxyroboncuclease I interaction. Depolymerization and nucleotide exchange. J Biol Chem. 1980 Jun 25;255(12):5668–5673. [PubMed] [Google Scholar]
  26. Hitchcock S. E., Carisson L., Lindberg U. Depolymerization of F-actin by deoxyribonuclease I. Cell. 1976 Apr;7(4):531–542. doi: 10.1016/0092-8674(76)90203-8. [DOI] [PubMed] [Google Scholar]
  27. Hu S., Reichardt L. F. From membrane to cytoskeleton: enabling a connection. Neuron. 1999 Mar;22(3):419–422. doi: 10.1016/s0896-6273(00)80696-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ismailov I. I., Awayda M. S., Berdiev B. K., Bubien J. K., Lucas J. E., Fuller C. M., Benos D. J. Triple-barrel organization of ENaC, a cloned epithelial Na+ channel. J Biol Chem. 1996 Jan 12;271(2):807–816. doi: 10.1074/jbc.271.2.807. [DOI] [PubMed] [Google Scholar]
  29. Ismailov I. I., Berdiev B. K., Shlyonsky V. G., Fuller C. M., Prat A. G., Jovov B., Cantiello H. F., Ausiello D. A., Benos D. J. Role of actin in regulation of epithelial sodium channels by CFTR. Am J Physiol. 1997 Apr;272(4 Pt 1):C1077–C1086. doi: 10.1152/ajpcell.1997.272.4.C1077. [DOI] [PubMed] [Google Scholar]
  30. Ismailov I. I., Shlyonsky V. G., Alvarez O., Benos D. J. Cation permeability of a cloned rat epithelial amiloride-sensitive Na+ channel. J Physiol. 1997 Oct 15;504(Pt 2):287–300. doi: 10.1111/j.1469-7793.1997.287be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ismailov I. I., Shlyonsky V. G., Serpersu E. H., Fuller C. M., Cheung H. C., Muccio D., Berdiev B. K., Benos D. J. Peptide inhibition of ENaC. Biochemistry. 1999 Jan 5;38(1):354–363. doi: 10.1021/bi981979s. [DOI] [PubMed] [Google Scholar]
  32. Janmey P. A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev. 1998 Jul;78(3):763–781. doi: 10.1152/physrev.1998.78.3.763. [DOI] [PubMed] [Google Scholar]
  33. Kabsch W., Vandekerckhove J. Structure and function of actin. Annu Rev Biophys Biomol Struct. 1992;21:49–76. doi: 10.1146/annurev.bb.21.060192.000405. [DOI] [PubMed] [Google Scholar]
  34. Kinosian H. J., Selden L. A., Estes J. E., Gershman L. C. Thermodynamics of actin polymerization; influence of the tightly bound divalent cation and nucleotide. Biochim Biophys Acta. 1991 Apr 8;1077(2):151–158. doi: 10.1016/0167-4838(91)90052-2. [DOI] [PubMed] [Google Scholar]
  35. Korn E. D., Carlier M. F., Pantaloni D. Actin polymerization and ATP hydrolysis. Science. 1987 Oct 30;238(4827):638–644. doi: 10.1126/science.3672117. [DOI] [PubMed] [Google Scholar]
  36. Lingueglia E., Voilley N., Waldmann R., Lazdunski M., Barbry P. Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 1993 Feb 22;318(1):95–99. doi: 10.1016/0014-5793(93)81336-x. [DOI] [PubMed] [Google Scholar]
  37. Mannherz H. G., Leigh J. B., Leberman R., Pfrang H. A specific 1:1 G-actin:DNAase i complex formed by the action of DNAase I on F-actin. FEBS Lett. 1975 Dec 1;60(1):34–38. doi: 10.1016/0014-5793(75)80412-1. [DOI] [PubMed] [Google Scholar]
  38. Mills J. W., Mandel L. J. Cytoskeletal regulation of membrane transport events. FASEB J. 1994 Nov;8(14):1161–1165. doi: 10.1096/fasebj.8.14.7958622. [DOI] [PubMed] [Google Scholar]
  39. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  40. Pollard T. D., Weeds A. G. The rate constant for ATP hydrolysis by polymerized actin. FEBS Lett. 1984 May 7;170(1):94–98. doi: 10.1016/0014-5793(84)81376-9. [DOI] [PubMed] [Google Scholar]
  41. Prat A. G., Bertorello A. M., Ausiello D. A., Cantiello H. F. Activation of epithelial Na+ channels by protein kinase A requires actin filaments. Am J Physiol. 1993 Jul;265(1 Pt 1):C224–C233. doi: 10.1152/ajpcell.1993.265.1.C224. [DOI] [PubMed] [Google Scholar]
  42. Sheng M., Pak D. T. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol. 2000;62:755–778. doi: 10.1146/annurev.physiol.62.1.755. [DOI] [PubMed] [Google Scholar]
  43. Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smith G. L., Miller D. J. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta. 1985 May 8;839(3):287–299. doi: 10.1016/0304-4165(85)90011-x. [DOI] [PubMed] [Google Scholar]
  45. Smith P. R., Saccomani G., Joe E. H., Angelides K. J., Benos D. J. Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6971–6975. doi: 10.1073/pnas.88.16.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Staub O., Dho S., Henry P., Correa J., Ishikawa T., McGlade J., Rotin D. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 1996 May 15;15(10):2371–2380. [PMC free article] [PubMed] [Google Scholar]
  47. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  48. Vergara C., Latorre R. Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. Evidence for a Ca2+ and Ba2+ blockade. J Gen Physiol. 1983 Oct;82(4):543–568. doi: 10.1085/jgp.82.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Villarroel A., Alvarez O., Oberhauser A., Latorre R. Probing a Ca2+-activated K+ channel with quaternary ammonium ions. Pflugers Arch. 1988 Dec;413(2):118–126. doi: 10.1007/BF00582521. [DOI] [PubMed] [Google Scholar]
  50. Wang G. K. Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers. J Gen Physiol. 1988 Dec;92(6):747–765. doi: 10.1085/jgp.92.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yellen G. Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J Gen Physiol. 1984 Aug;84(2):157–186. doi: 10.1085/jgp.84.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zigmond S. H. Signal transduction and actin filament organization. Curr Opin Cell Biol. 1996 Feb;8(1):66–73. doi: 10.1016/s0955-0674(96)80050-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES