Abstract
Na+,K+-ATPase is a heterodimer of alpha and beta subunits and a member of the P-type ATPase family of ion pumps. Here we present an 11-A structure of the heterodimer determined from electron micrographs of unstained frozen-hydrated tubular crystals. For this reconstruction, the enzyme was isolated from supraorbital glands of salt-adapted ducks and was crystallized within the native membranes. Crystallization conditions fixed Na+,K+-ATPase in the vanadate-inhibited E2 conformation, and the crystals had p1 symmetry. A large number of helical symmetries were observed, so a three-dimensional structure was calculated by averaging both Fourier-Bessel coefficients and real-space structures of data from the different symmetries. The resulting structure clearly reveals cytoplasmic, transmembrane, and extracellular regions of the molecule with densities separately attributable to alpha and beta subunits. The overall shape bears a remarkable resemblance to the E2 structure of rabbit sarcoplasmic reticulum Ca2+-ATPase. After aligning these two structures, atomic coordinates for Ca2+-ATPase were fit to Na+,K+-ATPase, and several flexible surface loops, which fit the map poorly, were associated with sequences that differ in the two pumps. Nevertheless, cytoplasmic domains were very similarly arranged, suggesting that the E2-to-E1 conformational change postulated for Ca2+-ATPase probably applies to Na+,K+-ATPase as well as other P-type ATPases.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abriel H., Hasler U., Geering K., Horisberger J. D. Role of the intracellular domain of the beta subunit in Na,K pump function. Biochim Biophys Acta. 1999 Apr 14;1418(1):85–96. doi: 10.1016/s0005-2736(99)00025-5. [DOI] [PubMed] [Google Scholar]
- Beroukhim R., Unwin N. Distortion correction of tubular crystals: improvements in the acetylcholine receptor structure. Ultramicroscopy. 1997 Dec;70(1-2):57–81. doi: 10.1016/s0304-3991(97)00070-3. [DOI] [PubMed] [Google Scholar]
- Cantley L. C., Jr, Cantley L. G., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem. 1978 Oct 25;253(20):7361–7368. [PubMed] [Google Scholar]
- Colonna T. E., Huynh L., Fambrough D. M. Subunit interactions in the Na,K-ATPase explored with the yeast two-hybrid system. J Biol Chem. 1997 May 9;272(19):12366–12372. doi: 10.1074/jbc.272.19.12366. [DOI] [PubMed] [Google Scholar]
- DeRosier D. J., Moore P. B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol. 1970 Sep 14;52(2):355–369. doi: 10.1016/0022-2836(70)90036-7. [DOI] [PubMed] [Google Scholar]
- DeRosier D., Stokes D. L., Darst S. A. Averaging data derived from images of helical structures with different symmetries. J Mol Biol. 1999 May 28;289(1):159–165. doi: 10.1006/jmbi.1999.2677. [DOI] [PubMed] [Google Scholar]
- Gadsby D. C., Rakowski R. F., De Weer P. Extracellular access to the Na,K pump: pathway similar to ion channel. Science. 1993 Apr 2;260(5104):100–103. doi: 10.1126/science.7682009. [DOI] [PubMed] [Google Scholar]
- Goldshleger R., Karlish S. J. The energy transduction mechanism of Na,K-ATPase studied with iron-catalyzed oxidative cleavage. J Biol Chem. 1999 Jun 4;274(23):16213–16221. doi: 10.1074/jbc.274.23.16213. [DOI] [PubMed] [Google Scholar]
- Hasler U., Wang X., Crambert G., Béguin P., Jaisser F., Horisberger J. D., Geering K. Role of beta-subunit domains in the assembly, stable expression, intracellular routing, and functional properties of Na,K-ATPase. J Biol Chem. 1998 Nov 13;273(46):30826–30835. doi: 10.1074/jbc.273.46.30826. [DOI] [PubMed] [Google Scholar]
- Hebert H., Skriver E., Söderholm M., Maunsbach A. B. Three-dimensional structure of renal Na,K-ATPase determined from two-dimensional membrane crystals of the p1 form. J Ultrastruct Mol Struct Res. 1988 Jul;100(1):86–93. doi: 10.1016/0889-1605(88)90061-4. [DOI] [PubMed] [Google Scholar]
- Herbert H., Skriver E., Maunsbach A. B. Three-dimensional structure of renal Na,K-ATPase determined by electron microscopy of membrane crystals. FEBS Lett. 1985 Jul 22;187(1):182–186. doi: 10.1016/0014-5793(85)81238-2. [DOI] [PubMed] [Google Scholar]
- Jencks W. P. How does a calcium pump pump calcium? J Biol Chem. 1989 Nov 15;264(32):18855–18858. [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta. 1975 Sep 2;401(3):399–415. doi: 10.1016/0005-2736(75)90239-4. [DOI] [PubMed] [Google Scholar]
- Jørgensen P. L., Andersen J. P. Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins. J Membr Biol. 1988 Jul;103(2):95–120. doi: 10.1007/BF01870942. [DOI] [PubMed] [Google Scholar]
- Jørgensen P. L., Klodos I. Purification and characterization of (Na+ + K+)-ATPase. VII. Tryptic degradation of the Na-form of the enzyme protein resulting in selective modification of dephosphorylation reactions of the (Na+ + K+)-ATPase. Biochim Biophys Acta. 1978 Feb 2;507(1):8–16. doi: 10.1016/0005-2736(78)90369-3. [DOI] [PubMed] [Google Scholar]
- Kapakos J. G., Steinberg M. Fluorescent labeling of (Na+ + K+)-ATPase by 5-iodoacetamidofluorescein. Biochim Biophys Acta. 1982 Dec 22;693(2):493–496. doi: 10.1016/0005-2736(82)90458-8. [DOI] [PubMed] [Google Scholar]
- Karlish S. J. Characterization of conformational changes in (Na,K) ATPase labeled with fluorescein at the active site. J Bioenerg Biomembr. 1980 Aug;12(3-4):111–136. doi: 10.1007/BF00744678. [DOI] [PubMed] [Google Scholar]
- Karlish S. J., Yates D. W. Tryptophan fluorescence of (Na+ + K+)-ATPase as a tool for study of the enzyme mechanism. Biochim Biophys Acta. 1978 Nov 10;527(1):115–130. doi: 10.1016/0005-2744(78)90261-9. [DOI] [PubMed] [Google Scholar]
- Kessi J., Poirée J. C., Wehrli E., Bachofen R., Semenza G., Hauser H. Short-chain phosphatidylcholines as superior detergents in solubilizing membrane proteins and preserving biological activity. Biochemistry. 1994 Sep 6;33(35):10825–10836. doi: 10.1021/bi00201a033. [DOI] [PubMed] [Google Scholar]
- Koster J. C., Blanco G., Mercer R. W. A cytoplasmic region of the Na,K-ATPase alpha-subunit is necessary for specific alpha/alpha association. J Biol Chem. 1995 Jun 16;270(24):14332–14339. doi: 10.1074/jbc.270.24.14332. [DOI] [PubMed] [Google Scholar]
- Kühlbrandt W., Auer M., Scarborough G. A. Structure of the P-type ATPases. Curr Opin Struct Biol. 1998 Aug;8(4):510–516. doi: 10.1016/s0959-440x(98)80130-9. [DOI] [PubMed] [Google Scholar]
- Lemas M. V., Hamrick M., Takeyasu K., Fambrough D. M. 26 amino acids of an extracellular domain of the Na,K-ATPase alpha-subunit are sufficient for assembly with the Na,K-ATPase beta-subunit. J Biol Chem. 1994 Mar 18;269(11):8255–8259. [PubMed] [Google Scholar]
- Martin D. W., Sachs J. R. Preparation of Na+,K+-ATPase with near maximal specific activity and phosphorylation capacity: evidence that the reaction mechanism involves all of the sites. Biochemistry. 1999 Jun 8;38(23):7485–7497. doi: 10.1021/bi983019b. [DOI] [PubMed] [Google Scholar]
- Miyazawa A., Fujiyoshi Y., Stowell M., Unwin N. Nicotinic acetylcholine receptor at 4.6 A resolution: transverse tunnels in the channel wall. J Mol Biol. 1999 May 14;288(4):765–786. doi: 10.1006/jmbi.1999.2721. [DOI] [PubMed] [Google Scholar]
- Mohraz M., Simpson M. V., Smith P. R. The three-dimensional structure of the Na,K-ATPase from electron microscopy. J Cell Biol. 1987 Jul;105(1):1–8. doi: 10.1083/jcb.105.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
- Patchornik G., Goldshleger R., Karlish S. J. The complex ATP-Fe(2+) serves as a specific affinity cleavage reagent in ATP-Mg(2+) sites of Na,K-ATPase: altered ligation of Fe(2+) (Mg(2+)) ions accompanies the E(1)-->E(2) conformational change. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11954–11959. doi: 10.1073/pnas.220332897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
- Sagara Y., Wade J. B., Inesi G. A conformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin. J Biol Chem. 1992 Jan 15;267(2):1286–1292. [PubMed] [Google Scholar]
- Skriver E., Kavéus U., Hebert H., Maunsbach A. B. Three-dimensional structure of Na,K-ATPase determined from membrane crystals induced by cobalt-tetrammine-ATP. J Struct Biol. 1992 Mar-Apr;108(2):176–185. doi: 10.1016/1047-8477(92)90017-5. [DOI] [PubMed] [Google Scholar]
- Skriver E., Maunsbach A. B., Jørgensen P. L. Formation of two-dimensional crystals in pure membrane-bound Na+,K+-ATPase. FEBS Lett. 1981 Aug 31;131(2):219–222. doi: 10.1016/0014-5793(81)80371-7. [DOI] [PubMed] [Google Scholar]
- Stokes D. L., Auer M., Zhang P., Kühlbrandt W. Comparison of H+-ATPase and Ca2+-ATPase suggests that a large conformational change initiates P-type ion pump reaction cycles. Curr Biol. 1999 Jul 1;9(13):672–679. doi: 10.1016/s0960-9822(99)80307-8. [DOI] [PubMed] [Google Scholar]
- Stokes D. L., Green N. M. Modeling a dehalogenase fold into the 8-A density map for Ca(2+)-ATPase defines a new domain structure. Biophys J. 2000 Apr;78(4):1765–1776. doi: 10.1016/s0006-3495(00)76727-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokes D. L., Lacapère J. J. Conformation of Ca(2+)-ATPase in two crystal forms. Effects of Ca2+, thapsigargin, adenosine 5'-(beta, gamma-methylene)triphosphate), and chromium(III)-ATP on crystallization. J Biol Chem. 1994 Apr 15;269(15):11606–11613. [PubMed] [Google Scholar]
- Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J Biol Chem. 1994 Sep 16;269(37):22929–22932. [PubMed] [Google Scholar]
- Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
- Toyoshima C., Sasabe H., Stokes D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature. 1993 Apr 1;362(6419):467–471. doi: 10.1038/362469a0. [DOI] [PubMed] [Google Scholar]
- Unwin N. Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol. 1993 Feb 20;229(4):1101–1124. doi: 10.1006/jmbi.1993.1107. [DOI] [PubMed] [Google Scholar]
- Wriggers W., Agrawal R. K., Drew D. L., McCammon A., Frank J. Domain motions of EF-G bound to the 70S ribosome: insights from a hand-shaking between multi-resolution structures. Biophys J. 2000 Sep;79(3):1670–1678. doi: 10.1016/S0006-3495(00)76416-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wriggers W., Milligan R. A., McCammon J. A. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J Struct Biol. 1999 Apr-May;125(2-3):185–195. doi: 10.1006/jsbi.1998.4080. [DOI] [PubMed] [Google Scholar]
- Yamashita I., Hasegawa K., Suzuki H., Vonderviszt F., Mimori-Kiyosue Y., Namba K. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat Struct Biol. 1998 Feb;5(2):125–132. doi: 10.1038/nsb0298-125. [DOI] [PubMed] [Google Scholar]
- Yonekura K., Stokes D. L., Sasabe H., Toyoshima C. The ATP-binding site of Ca(2+)-ATPase revealed by electron image analysis. Biophys J. 1997 Mar;72(3):997–1005. doi: 10.1016/S0006-3495(97)78752-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P., Toyoshima C., Yonekura K., Green N. M., Stokes D. L. Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature. 1998 Apr 23;392(6678):835–839. doi: 10.1038/33959. [DOI] [PubMed] [Google Scholar]