Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2207–2215. doi: 10.1016/S0006-3495(01)76193-0

Inwardly rectifying current-voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade.

H Soh 1, C S Park 1
PMCID: PMC1301412  PMID: 11325723

Abstract

Small conductance Ca2+-activated K+ channels (SK(Ca) channels) are a group of K+-selective ion channels activated by submicromolar concentrations of intracellular Ca2+ independent of membrane voltages. We expressed a cloned SK(Ca) channel, rSK2, in Xenopus oocytes and investigated the effects of intracellular divalent cations on the current-voltage (I-V) relationship of the channels. Both Mg2+ and Ca2+ reduced the rSK2 channel currents in voltage-dependent manners from the intracellular side and thus rectified the I-V relationship at physiological concentration ranges. The apparent affinity of Mg2+ was changed as a function of both transmembrane voltage and intracellular Ca2+ concentration. Extracellular K+ altered the voltage dependence as well as the apparent affinities of Mg2+ binding from intracellular side. Thus, the inwardly rectifying I-V relationship of SK(Ca) channels is likely due to the voltage-dependent blockade of intracellular divalent cations and that the binding site is located within the ion-conducting pathway. Therefore, intracellular Ca2+ modulates the permeation characteristics of SK(Ca) channels by altering the I-V relationship as well as activates the channel by interacting with the gating machinery, calmodulin, and SK(Ca) channels can be considered as Ca2+-activated inward rectifier K+ channels.

Full Text

The Full Text of this article is available as a PDF (142.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG C. M., BINSTOCK L. ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE. J Gen Physiol. 1965 May;48:859–872. doi: 10.1085/jgp.48.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bezanilla F., Armstrong C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol. 1972 Nov;60(5):588–608. doi: 10.1085/jgp.60.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cao Y. J., Houamed K. M. Activation of recombinant human SK4 channels by metal cations. FEBS Lett. 1999 Mar 5;446(1):137–141. doi: 10.1016/s0014-5793(99)00194-5. [DOI] [PubMed] [Google Scholar]
  4. Doupnik C. A., Davidson N., Lester H. A. The inward rectifier potassium channel family. Curr Opin Neurobiol. 1995 Jun;5(3):268–277. doi: 10.1016/0959-4388(95)80038-7. [DOI] [PubMed] [Google Scholar]
  5. Ha T. S., Jeong S. Y., Cho S. W., Jeon H. k., Roh G. S., Choi W. S., Park C. S. Functional characteristics of two BKCa channel variants differentially expressed in rat brain tissues. Eur J Biochem. 2000 Feb;267(3):910–918. doi: 10.1046/j.1432-1327.2000.01076.x. [DOI] [PubMed] [Google Scholar]
  6. Hille B. Ionic selectivity of Na and K channels of nerve membranes. Membranes. 1975;3:255–323. [PubMed] [Google Scholar]
  7. Ishii T. M., Maylie J., Adelman J. P. Determinants of apamin and d-tubocurarine block in SK potassium channels. J Biol Chem. 1997 Sep 12;272(37):23195–23200. doi: 10.1074/jbc.272.37.23195. [DOI] [PubMed] [Google Scholar]
  8. Keen J. E., Khawaled R., Farrens D. L., Neelands T., Rivard A., Bond C. T., Janowsky A., Fakler B., Adelman J. P., Maylie J. Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels. J Neurosci. 1999 Oct 15;19(20):8830–8838. doi: 10.1523/JNEUROSCI.19-20-08830.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Köhler M., Hirschberg B., Bond C. T., Kinzie J. M., Marrion N. V., Maylie J., Adelman J. P. Small-conductance, calcium-activated potassium channels from mammalian brain. Science. 1996 Sep 20;273(5282):1709–1714. doi: 10.1126/science.273.5282.1709. [DOI] [PubMed] [Google Scholar]
  10. Lancaster B., Nicoll R. A., Perkel D. J. Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J Neurosci. 1991 Jan;11(1):23–30. doi: 10.1523/JNEUROSCI.11-01-00023.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  12. Lu Z., MacKinnon R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature. 1994 Sep 15;371(6494):243–246. doi: 10.1038/371243a0. [DOI] [PubMed] [Google Scholar]
  13. Ozawa T., Sasaki K., Umezawa Y. Metal ion selectivity for formation of the calmodulin-metal-target peptide ternary complex studied by surface plasmon resonance spectroscopy. Biochim Biophys Acta. 1999 Oct 12;1434(2):211–220. doi: 10.1016/s0167-4838(99)00185-5. [DOI] [PubMed] [Google Scholar]
  14. Park C. S., MacKinnon R. Divalent cation selectivity in a cyclic nucleotide-gated ion channel. Biochemistry. 1995 Oct 17;34(41):13328–13333. doi: 10.1021/bi00041a008. [DOI] [PubMed] [Google Scholar]
  15. Regehr W. G., Tank D. W. Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J Neurosci. 1992 Nov;12(11):4202–4223. doi: 10.1523/JNEUROSCI.12-11-04202.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spassova M., Lu Z. Coupled ion movement underlies rectification in an inward-rectifier K+ channel. J Gen Physiol. 1998 Aug;112(2):211–221. doi: 10.1085/jgp.112.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vergara C., Latorre R., Marrion N. V., Adelman J. P. Calcium-activated potassium channels. Curr Opin Neurobiol. 1998 Jun;8(3):321–329. doi: 10.1016/s0959-4388(98)80056-1. [DOI] [PubMed] [Google Scholar]
  18. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Xia X. M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J. E., Ishii T., Hirschberg B., Bond C. T., Lutsenko S. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 1998 Oct 1;395(6701):503–507. doi: 10.1038/26758. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES