Abstract
Previous correction methods for series access resistance errors in the dual whole-cell configuration did not take into account the effect of nonzero resting potentials (E(rest)) and junctional reversal potentials (E(rev)). Dual whole-cell currents were modeled according to resistor-circuit analysis and two correction formulas for the measurement of junctional currents (I(j)) were assessed. The equations for I(j), derived from Kirchoff's law before and after baseline subtraction of the nonjunctional current, were assessed for accuracy under a variety of whole-cell patch-clamp recording conditions. Both equations accurately correct for dual whole-cell voltage-clamp errors provided that the cellular parameters are included in the nonbaseline subtracted I(j) derivations. Junctional conductance (g(j)) estimates are most reliable at high junctional resistance (R(j)) values and minimize the need for corrective methods based on electrode series and cellular input resistances (R(el) and R(in)). In the "open-cell" configuration, low R(j) values relative to R(in) are required for accurate g(j) estimates. These methods provide the basis for accurate quantitative measurements of junctional resistance (or conductance) of gap junction channels or connexin hemichannels in the dual whole-cell or open-cell configurations. Revaluation of V(j)-dependent gating of rat connexin40 g(j) produced nearly identical Boltzmann fits to previously published data. Continuous g(j)-V(j) curves generated by variable slope V(j) ramps provide for more accurate fits and assessment of the time-dependence of the half-inactivation voltage and net gating charge movement.
Full Text
The Full Text of this article is available as a PDF (305.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrio L. C., Suchyna T., Bargiello T., Xu L. X., Roginski R. S., Bennett M. V., Nicholson B. J. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8410–8414. doi: 10.1073/pnas.88.19.8410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beblo D. A., Wang H. Z., Beyer E. C., Westphale E. M., Veenstra R. D. Unique conductance, gating, and selective permeability properties of gap junction channels formed by connexin40. Circ Res. 1995 Oct;77(4):813–822. doi: 10.1161/01.res.77.4.813. [DOI] [PubMed] [Google Scholar]
- Bukauskas F. F., Elfgang C., Willecke K., Weingart R. Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance. Pflugers Arch. 1995 Apr;429(6):870–872. doi: 10.1007/BF00374812. [DOI] [PubMed] [Google Scholar]
- Chanson M., Chandross K. J., Rook M. B., Kessler J. A., Spray D. C. Gating characteristics of a steeply voltage-dependent gap junction channel in rat Schwann cells. J Gen Physiol. 1993 Nov;102(5):925–946. doi: 10.1085/jgp.102.5.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Harris A. L., Spray D. C., Bennett M. V. Kinetic properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981 Jan;77(1):95–117. doi: 10.1085/jgp.77.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
- Kolb H. A., Somogyi R. Biochemical and biophysical analysis of cell-to-cell channels and regulation of gap junctional permeability. Rev Physiol Biochem Pharmacol. 1991;118:1–47. doi: 10.1007/BFb0031480. [DOI] [PubMed] [Google Scholar]
- Mazet F., Wittenberg B. A., Spray D. C. Fate of intercellular junctions in isolated adult rat cardiac cells. Circ Res. 1985 Feb;56(2):195–204. doi: 10.1161/01.res.56.2.195. [DOI] [PubMed] [Google Scholar]
- Neyton J., Trautmann A. Single-channel currents of an intercellular junction. 1985 Sep 26-Oct 2Nature. 317(6035):331–335. doi: 10.1038/317331a0. [DOI] [PubMed] [Google Scholar]
- Noma A., Tsuboi N. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. J Physiol. 1987 Jan;382:193–211. doi: 10.1113/jphysiol.1987.sp016363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oh S., Abrams C. K., Verselis V. K., Bargiello T. A. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J Gen Physiol. 2000 Jul 1;116(1):13–31. doi: 10.1085/jgp.116.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rook M. B., Jongsma H. J., van Ginneken A. C. Properties of single gap junctional channels between isolated neonatal rat heart cells. Am J Physiol. 1988 Oct;255(4 Pt 2):H770–H782. doi: 10.1152/ajpheart.1988.255.4.H770. [DOI] [PubMed] [Google Scholar]
- Spray D. C., Harris A. L., Bennett M. V. Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981 Jan;77(1):77–93. doi: 10.1085/jgp.77.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suchyna T. M., Nitsche J. M., Chilton M., Harris A. L., Veenstra R. D., Nicholson B. J. Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels. Biophys J. 1999 Dec;77(6):2968–2987. doi: 10.1016/S0006-3495(99)77129-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiura H., Toyama J., Tsuboi N., Kamiya K., Kodama I. ATP directly affects junctional conductance between paired ventricular myocytes isolated from guinea pig heart. Circ Res. 1990 Apr;66(4):1095–1102. doi: 10.1161/01.res.66.4.1095. [DOI] [PubMed] [Google Scholar]
- Van Rijen H. V., Wilders R., Van Ginneken A. C., Jongsma H. J. Quantitative analysis of dual whole-cell voltage-clamp determination of gap junctional conductance. Pflugers Arch. 1998 Jun;436(1):141–151. doi: 10.1007/s004240050615. [DOI] [PubMed] [Google Scholar]
- Veenstra R. D., DeHaan R. L. Measurement of single channel currents from cardiac gap junctions. Science. 1986 Aug 29;233(4767):972–974. doi: 10.1126/science.2426781. [DOI] [PubMed] [Google Scholar]
- Veenstra R. D. Developmental changes in regulation of embryonic chick heart gap junctions. J Membr Biol. 1991 Feb;119(3):253–265. doi: 10.1007/BF01868730. [DOI] [PubMed] [Google Scholar]
- Veenstra R. D. Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr. 1996 Aug;28(4):327–337. doi: 10.1007/BF02110109. [DOI] [PubMed] [Google Scholar]
- Veenstra R. D., Wang H. Z., Westphale E. M., Beyer E. C. Multiple connexins confer distinct regulatory and conductance properties of gap junctions in developing heart. Circ Res. 1992 Nov;71(5):1277–1283. doi: 10.1161/01.res.71.5.1277. [DOI] [PubMed] [Google Scholar]
- Verselis V. K., Ginter C. S., Bargiello T. A. Opposite voltage gating polarities of two closely related connexins. Nature. 1994 Mar 24;368(6469):348–351. doi: 10.1038/368348a0. [DOI] [PubMed] [Google Scholar]
- Wang H. Z., Li J., Lemanski L. F., Veenstra R. D. Gating of mammalian cardiac gap junction channels by transjunctional voltage. Biophys J. 1992 Jul;63(1):139–151. doi: 10.1016/S0006-3495(92)81573-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weingart R. Electrical properties of the nexal membrane studied in rat ventricular cell pairs. J Physiol. 1986 Jan;370:267–284. doi: 10.1113/jphysiol.1986.sp015934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilders R., Jongsma H. J. Limitations of the dual voltage clamp method in assaying conductance and kinetics of gap junction channels. Biophys J. 1992 Oct;63(4):942–953. doi: 10.1016/S0006-3495(92)81664-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., McBride D. W., Jr, Hamill O. P. The ion selectivity of a membrane conductance inactivated by extracellular calcium in Xenopus oocytes. J Physiol. 1998 May 1;508(Pt 3):763–776. doi: 10.1111/j.1469-7793.1998.763bp.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou X. W., Pfahnl A., Werner R., Hudder A., Llanes A., Luebke A., Dahl G. Identification of a pore lining segment in gap junction hemichannels. Biophys J. 1997 May;72(5):1946–1953. doi: 10.1016/S0006-3495(97)78840-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
