Abstract
The interaction of alpha-melanocyte stimulating hormone (alpha-MSH) with negatively charged binary membrane systems composed of either 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], (DMPC/DMPG) or DMPC/1,2-dimyristoyl-sn-glycero-3-phosphate (DMPC/DMPA), both at a 3:1 ratio, was studied using complementary techniques (differential scanning calorimetry, infrared and ultraviolet absorption spectroscopy, and steady-state and time-resolved fluorescence). The peptide structure in buffer, at medium to high concentrations, is a mixture of aggregated beta-strands and random coil, and upon increasing the temperature the random coil configuration becomes predominant. At low concentrations (micromolar) there are essentially no aggregates. When in interaction with the lipidic systems this transition is prevented and the peptide is stabilized in a specific conformation different from the one in solution. The incorporation of alpha-MSH into phosphatidic acid-containing systems produced a significant alteration of the calorimetric data. Lateral heterogeneity can be induced by the peptide in the DMPA-containing mixture, at variance with the one of DMPG. In addition, the lipid/water partition coefficient for the peptide in the presence of DMPC/DMPA is greater in the gel phase as compared to the fluid phase. From the high values of limiting anisotropies it can be concluded that the peptide presents a very reduced rotational dynamics when in interaction with the lipids, pointing out to a strong interaction. Overall, these results show that the structure and stability of alpha-MSH in a negatively charged membrane environment are substantially different from those of the peptide in solution, being stabilized in a specific conformation that could be important to eliciting its biological activity.
Full Text
The Full Text of this article is available as a PDF (143.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Obeidi F., Castrucci A. M., Hadley M. E., Hruby V. J. Potent and prolonged acting cyclic lactam analogues of alpha-melanotropin: design based on molecular dynamics. J Med Chem. 1989 Dec;32(12):2555–2561. doi: 10.1021/jm00132a010. [DOI] [PubMed] [Google Scholar]
- Arrondo J. L., Goñi F. M. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol. 1999;72(4):367–405. doi: 10.1016/s0079-6107(99)00007-3. [DOI] [PubMed] [Google Scholar]
- Biaggi M. H., Pinheiro T. J., Watts A., Lamy-Freund M. T. Spin label and 2H-NMR studies on the interaction of melanotropic peptides with lipid bilayers. Eur Biophys J. 1996;24(4):251–259. doi: 10.1007/BF00205106. [DOI] [PubMed] [Google Scholar]
- Biaggi M. H., Riske K. A., Lamy-Freund M. T. Melanotropic peptides-lipid bilayer interaction. Comparison of the hormone alpha-MSH to a biologically more potent analog. Biophys Chem. 1997 Sep 1;67(1-3):139–149. doi: 10.1016/s0301-4622(97)00030-6. [DOI] [PubMed] [Google Scholar]
- Dahms T. E., Szabo A. G. Probing local secondary structure by fluorescence: time-resolved and circular dichroism studies of highly purified neurotoxins. Biophys J. 1995 Aug;69(2):569–576. doi: 10.1016/S0006-3495(95)79930-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garidel P., Johann C., Blume A. Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH. Biophys J. 1997 May;72(5):2196–2210. doi: 10.1016/S0006-3495(97)78863-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González M., Lezcano N., Celis M. E., Fidelio G. D. Interaction of alpha-MSH and substance P with interfaces containing gangliosides. Peptides. 1996;17(2):269–274. doi: 10.1016/0196-9781(95)02102-7. [DOI] [PubMed] [Google Scholar]
- Graham I., Gagné J., Silvius J. R. Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid containing bilayers. Biochemistry. 1985 Dec 3;24(25):7123–7131. doi: 10.1021/bi00346a016. [DOI] [PubMed] [Google Scholar]
- Hruby V. J., Wilkes B. C., Hadley M. E., Al-Obeidi F., Sawyer T. K., Staples D. J., de Vaux A. E., Dym O., Castrucci A. M., Hintz M. F. alpha-Melanotropin: the minimal active sequence in the frog skin bioassay. J Med Chem. 1987 Nov;30(11):2126–2130. doi: 10.1021/jm00394a033. [DOI] [PubMed] [Google Scholar]
- Ito A. S., Castrucci A. M., Hruby V. J., Hadley M. E., Krajcarski D. T., Szabo A. G. Structure-activity correlations of melanotropin peptides in model lipids by tryptophan fluorescence studies. Biochemistry. 1993 Nov 16;32(45):12264–12272. doi: 10.1021/bi00096a041. [DOI] [PubMed] [Google Scholar]
- Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., Prenner E. J., Kondejewski L. H., Flach C. R., Mendelsohn R., Hodges R. S., McElhaney R. N. Fourier transform infrared spectroscopic studies of the interaction of the antimicrobial peptide gramicidin S with lipid micelles and with lipid monolayer and bilayer membranes. Biochemistry. 1999 Nov 16;38(46):15193–15203. doi: 10.1021/bi9912342. [DOI] [PubMed] [Google Scholar]
- Loura L. M., Fedorov A., Prieto M. Resonance energy transfer in a model system of membranes: application to gel and liquid crystalline phases. Biophys J. 1996 Oct;71(4):1823–1836. doi: 10.1016/S0006-3495(96)79383-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClare C. W. An accurate and convenient organic phosphorus assay. Anal Biochem. 1971 Feb;39(2):527–530. doi: 10.1016/0003-2697(71)90443-x. [DOI] [PubMed] [Google Scholar]
- Muga A., Mantsch H. H., Surewicz W. K. Apocytochrome c interaction with phospholipid membranes studied by Fourier-transform infrared spectroscopy. Biochemistry. 1991 Mar 12;30(10):2629–2635. doi: 10.1021/bi00224a010. [DOI] [PubMed] [Google Scholar]
- Pascutti P. G., El-Jaik L. J., Bisch P. M., Mundim K. C., Ito A. S. Molecular dynamics simulation of alpha-melanocyte stimulating hormone in a water-membrane model interface. Eur Biophys J. 1999;28(6):499–509. doi: 10.1007/s002490050232. [DOI] [PubMed] [Google Scholar]
- Santos N. C., Prieto M., Castanho M. A. Interaction of the major epitope region of HIV protein gp41 with membrane model systems. A fluorescence spectroscopy study. Biochemistry. 1998 Jun 16;37(24):8674–8682. doi: 10.1021/bi9803933. [DOI] [PubMed] [Google Scholar]
- Sawyer T. K., Hruby V. J., Darman P. S., Hadley M. E. [half-Cys4,half-Cys10]-alpha-Melanocyte-stimulating hormone: a cyclic alpha-melanotropin exhibiting superagonist biological activity. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1751–1755. doi: 10.1073/pnas.79.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawyer T. K., Sanfilippo P. J., Hruby V. J., Engel M. H., Heward C. B., Burnett J. B., Hadley M. E. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5754–5758. doi: 10.1073/pnas.77.10.5754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soares Macêdo Z., Furquim T. A., Ito A. S. Estimation of average depth of penetration of melanotropins in dimyristoylphosphatidylglycerol vesicles. Biophys Chem. 1996 Mar 7;59(1-2):193–202. doi: 10.1016/0301-4622(95)00136-0. [DOI] [PubMed] [Google Scholar]
- Thiaudière E., Siffert O., Talbot J. C., Bolard J., Alouf J. E., Dufourcq J. The amphiphilic alpha-helix concept. Consequences on the structure of staphylococcal delta-toxin in solution and bound to lipids. Eur J Biochem. 1991 Jan 1;195(1):203–213. doi: 10.1111/j.1432-1033.1991.tb15696.x. [DOI] [PubMed] [Google Scholar]
- Valeur B., Weber G. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem Photobiol. 1977 May;25(5):441–444. doi: 10.1111/j.1751-1097.1977.tb09168.x. [DOI] [PubMed] [Google Scholar]
- Willis K. J., Szabo A. G. Conformation of parathyroid hormone: time-resolved fluorescence studies. Biochemistry. 1992 Sep 22;31(37):8924–8931. doi: 10.1021/bi00152a032. [DOI] [PubMed] [Google Scholar]
- Zamyatnin A. A. Protein volume in solution. Prog Biophys Mol Biol. 1972;24:107–123. doi: 10.1016/0079-6107(72)90005-3. [DOI] [PubMed] [Google Scholar]
- de Kroon A. I., de Gier J., de Kruijff B. The effect of a membrane potential on the interaction of mastoparan X, a mitochondrial presequence, and several regulatory peptides with phospholipid vesicles. Biochim Biophys Acta. 1991 Sep 30;1068(2):111–124. doi: 10.1016/0005-2736(91)90199-i. [DOI] [PubMed] [Google Scholar]