Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2298–2309. doi: 10.1016/S0006-3495(01)76201-7

Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology.

R Galneder 1, V Kahl 1, A Arbuzova 1, M Rebecchi 1, J O Rädler 1, S McLaughlin 1
PMCID: PMC1301420  PMID: 11325731

Abstract

We describe an apparatus that combines microelectrophoresis and laser trap technologies to monitor the activity of phosphoinositide-specific phospholipase C-delta1 (PLC-delta) on a single bilayer-coated silica bead with a time resolution of approximately 1 s. A 1-microm-diameter bead was coated with a phospholipid bilayer composed of electrically neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol 4,5-bisphosphate (2% PIP2) and captured in a laser trap. When an AC field was applied (160 Hz, 20 V/cm), the electrophoretic force produced a displacement of the bead, Delta(x), from its equilibrium position in the trap; Delta(x), which was measured using a fast quadrant diode detector, is proportional to the zeta potential and thus to the number of PIP2 molecules on the outer leaflet (initially, approximately 10(5)). When a solution containing PLC-delta flows past the bead, the enzyme adsorbs to the surface and hydrolyzes PIP2 to form the neutral lipid diacylglycerol. We observed a nonexponential decay of PIP2 on the bead with time that is consistent with a model based on the known structural properties of PLC-delta.

Full Text

The Full Text of this article is available as a PDF (228.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allersma M. W., Gittes F., deCastro M. J., Stewart R. J., Schmidt C. F. Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys J. 1998 Feb;74(2 Pt 1):1074–1085. doi: 10.1016/S0006-3495(98)74031-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4853–4860. doi: 10.1073/pnas.94.10.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BANGHAM A. D., HEARD D. H., FLEMANS R., SEAMAN G. V. An apparatus for microelectrophoresis of small particles. Nature. 1958 Sep 6;182(4636):642–644. doi: 10.1038/182642a0. [DOI] [PubMed] [Google Scholar]
  4. Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
  5. Bayerl T. M., Bloom M. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Biophys J. 1990 Aug;58(2):357–362. doi: 10.1016/S0006-3495(90)82382-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  7. Brian A. A., McConnell H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6159–6163. doi: 10.1073/pnas.81.19.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bromann P. A., Boetticher E. E., Lomasney J. W. A single amino acid substitution in the pleckstrin homology domain of phospholipase C delta1 enhances the rate of substrate hydrolysis. J Biol Chem. 1997 Jun 27;272(26):16240–16246. doi: 10.1074/jbc.272.26.16240. [DOI] [PubMed] [Google Scholar]
  9. Cifuentes M. E., Honkanen L., Rebecchi M. J. Proteolytic fragments of phosphoinositide-specific phospholipase C-delta 1. Catalytic and membrane binding properties. J Biol Chem. 1993 Jun 5;268(16):11586–11593. [PubMed] [Google Scholar]
  10. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  11. Edman L., Rigler R. Memory landscapes of single-enzyme molecules. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8266–8271. doi: 10.1073/pnas.130589397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Essen L. O., Perisic O., Cheung R., Katan M., Williams R. L. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature. 1996 Apr 18;380(6575):595–602. doi: 10.1038/380595a0. [DOI] [PubMed] [Google Scholar]
  13. Essen L. O., Perisic O., Katan M., Wu Y., Roberts M. F., Williams R. L. Structural mapping of the catalytic mechanism for a mammalian phosphoinositide-specific phospholipase C. Biochemistry. 1997 Feb 18;36(7):1704–1718. doi: 10.1021/bi962512p. [DOI] [PubMed] [Google Scholar]
  14. Ferguson K. M., Lemmon M. A., Schlessinger J., Sigler P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell. 1995 Dec 15;83(6):1037–1046. doi: 10.1016/0092-8674(95)90219-8. [DOI] [PubMed] [Google Scholar]
  15. Gittes F., Schmidt C. F. Signals and noise in micromechanical measurements. Methods Cell Biol. 1998;55:129–156. doi: 10.1016/s0091-679x(08)60406-9. [DOI] [PubMed] [Google Scholar]
  16. Goldstein B., Dembo M. Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics. Biophys J. 1995 Apr;68(4):1222–1230. doi: 10.1016/S0006-3495(95)80298-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grobler J. A., Essen L. O., Williams R. L., Hurley J. H. C2 domain conformational changes in phospholipase C-delta 1. Nat Struct Biol. 1996 Sep;3(9):788–795. doi: 10.1038/nsb0996-788. [DOI] [PubMed] [Google Scholar]
  18. Groves J. T., Boxer S. G. Electric field-induced concentration gradients in planar supported bilayers. Biophys J. 1995 Nov;69(5):1972–1975. doi: 10.1016/S0006-3495(95)80067-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  20. Hondal R. J., Zhao Z., Kravchuk A. V., Liao H., Riddle S. R., Yue X., Bruzik K. S., Tsai M. D. Mechanism of phosphatidylinositol-specific phospholipase C: a unified view of the mechanism of catalysis. Biochemistry. 1998 Mar 31;37(13):4568–4580. doi: 10.1021/bi972646i. [DOI] [PubMed] [Google Scholar]
  21. Hurley J. H., Grobler J. A. Protein kinase C and phospholipase C: bilayer interactions and regulation. Curr Opin Struct Biol. 1997 Aug;7(4):557–565. doi: 10.1016/s0959-440x(97)80122-4. [DOI] [PubMed] [Google Scholar]
  22. Hurley J. H., Misra S. Signaling and subcellular targeting by membrane-binding domains. Annu Rev Biophys Biomol Struct. 2000;29:49–79. doi: 10.1146/annurev.biophys.29.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jacobs A., White G. P., Tait G. P. Iron chelation in cell cultures by two conjugates of 2,3-dihydroxybenzoic acid (2,3 -DHB). Biochem Biophys Res Commun. 1977 Feb 21;74(4):1626–1630. doi: 10.1016/0006-291x(77)90629-5. [DOI] [PubMed] [Google Scholar]
  24. Katan M, Williams RL. Phosphoinositide-specific phospholipase C: structural basis for catalysis and regulatory interactions. Semin Cell Dev Biol. 1997 Jun;8(3):287–296. doi: 10.1006/scdb.1997.0150. [DOI] [PubMed] [Google Scholar]
  25. Köchy T, Bayerl TM. Lateral diffusion coefficients of phospholipids in spherical bilayers on a solid support measured by 2H-nuclear-magnetic-resonance relaxation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Mar;47(3):2109–2116. doi: 10.1103/physreve.47.2109. [DOI] [PubMed] [Google Scholar]
  26. Lagerholm B. C., Thompson N. L. Theory for ligand rebinding at cell membrane surfaces. Biophys J. 1998 Mar;74(3):1215–1228. doi: 10.1016/S0006-3495(98)77836-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lemmon M. A., Ferguson K. M., O'Brien R., Sigler P. B., Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10472–10476. doi: 10.1073/pnas.92.23.10472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lomasney J. W., Cheng H. F., Roffler S. R., King K. Activation of phospholipase C delta1 through C2 domain by a Ca(2+)-enzyme-phosphatidylserine ternary complex. J Biol Chem. 1999 Jul 30;274(31):21995–22001. doi: 10.1074/jbc.274.31.21995. [DOI] [PubMed] [Google Scholar]
  29. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  30. Mehta A. D., Finer J. T., Spudich J. A. Reflections of a lucid dreamer: optical trap design considerations. Methods Cell Biol. 1998;55:47–69. doi: 10.1016/s0091-679x(08)60402-1. [DOI] [PubMed] [Google Scholar]
  31. Morris A. J., Rudge S. A., Mahlum C. E., Jenco J. M. Regulation of phosphoinositide-3-kinase by G protein beta gamma subunits in a rat osteosarcoma cell line. Mol Pharmacol. 1995 Sep;48(3):532–539. [PubMed] [Google Scholar]
  32. Rameh L. E., Cantley L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999 Mar 26;274(13):8347–8350. doi: 10.1074/jbc.274.13.8347. [DOI] [PubMed] [Google Scholar]
  33. Rebecchi M., Peterson A., McLaughlin S. Phosphoinositide-specific phospholipase C-delta 1 binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry. 1992 Dec 29;31(51):12742–12747. doi: 10.1021/bi00166a005. [DOI] [PubMed] [Google Scholar]
  34. Singer W. D., Brown H. A., Sternweis P. C. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem. 1997;66:475–509. doi: 10.1146/annurev.biochem.66.1.475. [DOI] [PubMed] [Google Scholar]
  35. Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
  36. Tall E., Dormán G., Garcia P., Runnels L., Shah S., Chen J., Profit A., Gu Q. M., Chaudhary A., Prestwich G. D. Phosphoinositide binding specificity among phospholipase C isozymes as determined by photo-cross-linking to novel substrate and product analogs. Biochemistry. 1997 Jun 10;36(23):7239–7248. doi: 10.1021/bi9702288. [DOI] [PubMed] [Google Scholar]
  37. Toner M., Vaio G., McLaughlin A., McLaughlin S. Adsorption of cations to phosphatidylinositol 4,5-bisphosphate. Biochemistry. 1988 Sep 20;27(19):7435–7443. doi: 10.1021/bi00419a039. [DOI] [PubMed] [Google Scholar]
  38. Wang L. P., Lim C., Kuan Y., Chen C. L., Chen H. F., King K. Positive charge at position 549 is essential for phosphatidylinositol 4,5-bisphosphate-hydrolyzing but not phosphatidylinositol-hydrolyzing activities of human phospholipase C delta1. J Biol Chem. 1996 Oct 4;271(40):24505–24516. doi: 10.1074/jbc.271.40.24505. [DOI] [PubMed] [Google Scholar]
  39. Xie X. S., Lu H. P. Single-molecule enzymology. J Biol Chem. 1999 Jun 4;274(23):15967–15970. doi: 10.1074/jbc.274.23.15967. [DOI] [PubMed] [Google Scholar]
  40. Yagisawa H., Sakuma K., Paterson H. F., Cheung R., Allen V., Hirata H., Watanabe Y., Hirata M., Williams R. L., Katan M. Replacements of single basic amino acids in the pleckstrin homology domain of phospholipase C-delta1 alter the ligand binding, phospholipase activity, and interaction with the plasma membrane. J Biol Chem. 1998 Jan 2;273(1):417–424. doi: 10.1074/jbc.273.1.417. [DOI] [PubMed] [Google Scholar]
  41. Yamamoto T., Takeuchi H., Kanematsu T., Allen V., Yagisawa H., Kikkawa U., Watanabe Y., Nakasima A., Katan M., Hirata M. Involvement of EF hand motifs in the Ca(2+)-dependent binding of the pleckstrin homology domain to phosphoinositides. Eur J Biochem. 1999 Oct 1;265(1):481–490. doi: 10.1046/j.1432-1327.1999.00786.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES