Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2310–2326. doi: 10.1016/S0006-3495(01)76202-9

Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes.

N Maurer 1, K F Wong 1, H Stark 1, L Louie 1, D McIntosh 1, T Wong 1, P Scherrer 1, S C Semple 1, P R Cullis 1
PMCID: PMC1301421  PMID: 11325732

Abstract

This study describes the effect of ethanol and the presence of poly(ethylene) glycol (PEG) lipids on the interaction of nucleotide-based polyelectrolytes with cationic liposomes. It is shown that preformed large unilamellar vesicles (LUVs) containing a cationic lipid and a PEG coating can be induced to entrap polynucleotides such as antisense oligonucleotides and plasmid DNA in the presence of ethanol. The interaction of the cationic liposomes with the polynucleotides leads to the formation of multilamellar liposomes ranging in size from 70 to 120 nm, only slightly bigger than the parent LUVs from which they originated. The degree of lamellarity as well as the size and polydispersity of the liposomes formed increases with increasing polynucleotide-to-lipid ratio. A direct correlation between the entrapment efficiency and the membrane-destabilizing effect of ethanol was observed. Although the morphology of the liposomes is still preserved at the ethanol concentrations used for entrapment (25-40%, v/v), entrapped low-molecular-weight solutes leak rapidly. In addition, lipids can flip-flop across the membrane and exchange rapidly between liposomes. Furthermore, there are indications that the interaction of the polynucleotides with the cationic liposomes in ethanol leads to formation of polynucleotide-cationic lipid domains, which act as adhesion points between liposomes. It is suggested that the spreading of this contact area leads to expulsion of PEG-ceramide and triggers processes that result in the formation of multilamellar systems with internalized polynucleotides. The high entrapment efficiencies achieved at high polyelectrolyte-to-lipid ratios and the small size and neutral character of these novel liposomal systems are of utility for liposomal delivery of macromolecular drugs.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albersdörfer A., Feder T., Sackmann E. Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study. Biophys J. 1997 Jul;73(1):245–257. doi: 10.1016/S0006-3495(97)78065-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almog S., Litman B. J., Wimley W., Cohen J., Wachtel E. J., Barenholz Y., Ben-Shaul A., Lichtenberg D. States of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry. 1990 May 15;29(19):4582–4592. doi: 10.1021/bi00471a012. [DOI] [PubMed] [Google Scholar]
  3. Angelova M. I., Hristova N., Tsoneva I. DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles. Eur Biophys J. 1999;28(2):142–150. doi: 10.1007/s002490050193. [DOI] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Bailey A. L., Cullis P. R. Modulation of membrane fusion by asymmetric transbilayer distributions of amino lipids. Biochemistry. 1994 Oct 25;33(42):12573–12580. doi: 10.1021/bi00208a007. [DOI] [PubMed] [Google Scholar]
  6. Barchfeld G. L., Deamer D. W. Alcohol effects on lipid bilayer permeability to protons and potassium: relation to the action of general anesthetics. Biochim Biophys Acta. 1988 Sep 15;944(1):40–48. doi: 10.1016/0005-2736(88)90314-8. [DOI] [PubMed] [Google Scholar]
  7. Barry J. A., Gawrisch K. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry. 1994 Jul 5;33(26):8082–8088. doi: 10.1021/bi00192a013. [DOI] [PubMed] [Google Scholar]
  8. Cullis PR, Chonn A. Recent advances in liposome technologies and their applications for systemic gene delivery. Adv Drug Deliv Rev. 1998 Mar 2;30(1-3):73–83. doi: 10.1016/s0169-409x(97)00108-7. [DOI] [PubMed] [Google Scholar]
  9. Evans E. A., Parsegian V. A. Energetics of membrane deformation and adhesion in cell and vesicle aggregation. Ann N Y Acad Sci. 1983;416:13–33. doi: 10.1111/j.1749-6632.1983.tb35176.x. [DOI] [PubMed] [Google Scholar]
  10. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Felgner P. L. Nonviral strategies for gene therapy. Sci Am. 1997 Jun;276(6):102–106. doi: 10.1038/scientificamerican0697-102. [DOI] [PubMed] [Google Scholar]
  12. Gao X., Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995 Dec;2(10):710–722. [PubMed] [Google Scholar]
  13. Gustafsson J., Arvidson G., Karlsson G., Almgren M. Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim Biophys Acta. 1995 May 4;1235(2):305–312. doi: 10.1016/0005-2736(95)80018-b. [DOI] [PubMed] [Google Scholar]
  14. Hirschbein B. L., Fearon K. L. 31P NMR spectroscopy in oligonucleotide research and development. Antisense Nucleic Acid Drug Dev. 1997 Feb;7(1):55–61. doi: 10.1089/oli.1.1997.7.55. [DOI] [PubMed] [Google Scholar]
  15. Hoekstra D. Fluorescence assays to monitor membrane fusion: potential application in biliary lipid secretion and vesicle interactions. Hepatology. 1990 Sep;12(3 Pt 2):61S–66S. [PubMed] [Google Scholar]
  16. Holte L. L., Gawrisch K. Determining ethanol distribution in phospholipid multilayers with MAS-NOESY spectra. Biochemistry. 1997 Apr 15;36(15):4669–4674. doi: 10.1021/bi9626416. [DOI] [PubMed] [Google Scholar]
  17. Hope M. J., Walker D. C., Cullis P. R. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study. Biochem Biophys Res Commun. 1983 Jan 14;110(1):15–22. doi: 10.1016/0006-291x(83)91253-6. [DOI] [PubMed] [Google Scholar]
  18. Huebner S., Battersby B. J., Grimm R., Cevc G. Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. Biophys J. 1999 Jun;76(6):3158–3166. doi: 10.1016/S0006-3495(99)77467-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kachar B., Fuller N., Rand R. P. Morphological responses to calcium-induced interaction of phosphatidylserine-containing vesicles. Biophys J. 1986 Nov;50(5):779–788. doi: 10.1016/S0006-3495(86)83518-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Komatsu H., Okada S. Ethanol-enhanced permeation of phosphatidylcholine/ phosphatidylethanolamine mixed liposomal membranes due to ethanol-induced lateral phase separation. Biochim Biophys Acta. 1996 Aug 14;1283(1):73–79. doi: 10.1016/0005-2736(96)00082-x. [DOI] [PubMed] [Google Scholar]
  21. Leckband D. E., Helm C. A., Israelachvili J. Role of calcium in the adhesion and fusion of bilayers. Biochemistry. 1993 Feb 2;32(4):1127–1140. doi: 10.1021/bi00055a019. [DOI] [PubMed] [Google Scholar]
  22. Lentz B. R., Talbot W., Lee J., Zheng L. X. Transbilayer lipid redistribution accompanies poly(ethylene glycol) treatment of model membranes but is not induced by fusion. Biochemistry. 1997 Feb 25;36(8):2076–2083. doi: 10.1021/bi9623340. [DOI] [PubMed] [Google Scholar]
  23. Lipowsky R. The conformation of membranes. Nature. 1991 Feb 7;349(6309):475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
  24. Löbbecke L., Cevc G. Effects of short-chain alcohols on the phase behavior and interdigitation of phosphatidylcholine bilayer membranes. Biochim Biophys Acta. 1995 Jul 6;1237(1):59–69. doi: 10.1016/0005-2736(95)00076-f. [DOI] [PubMed] [Google Scholar]
  25. Macdonald P. M., Crowell K. J., Franzin C. M., Mitrakos P., Semchyschyn D. J. Polyelectrolyte-induced domains in lipid bilayer membranes: the deuterium NMR perspective. Biochem Cell Biol. 1998;76(2-3):452–464. doi: 10.1139/bcb-76-2-3-452. [DOI] [PubMed] [Google Scholar]
  26. Maurer N., Mori A., Palmer L., Monck M. A., Mok K. W., Mui B., Akhong Q. F., Cullis P. R. Lipid-based systems for the intracellular delivery of genetic drugs. Mol Membr Biol. 1999 Jan-Mar;16(1):129–140. doi: 10.1080/096876899294869. [DOI] [PubMed] [Google Scholar]
  27. May S., Harries D., Ben-Shaul A. The phase behavior of cationic lipid-DNA complexes. Biophys J. 2000 Apr;78(4):1681–1697. doi: 10.1016/S0006-3495(00)76720-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McIntyre J. C., Sleight R. G. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry. 1991 Dec 24;30(51):11819–11827. doi: 10.1021/bi00115a012. [DOI] [PubMed] [Google Scholar]
  29. Meyer O., Kirpotin D., Hong K., Sternberg B., Park J. W., Woodle M. C., Papahadjopoulos D. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem. 1998 Jun 19;273(25):15621–15627. doi: 10.1074/jbc.273.25.15621. [DOI] [PubMed] [Google Scholar]
  30. Miller D. C., Dahl G. P. Early events in calcium-induced liposome fusion. Biochim Biophys Acta. 1982 Jul 14;689(1):165–169. doi: 10.1016/0005-2736(82)90201-2. [DOI] [PubMed] [Google Scholar]
  31. Mitrakos P., Macdonald P. M. DNA-induced lateral segregation of cationic amphiphiles in lipid bilayer membranes as detected via 2H NMR. Biochemistry. 1996 Dec 24;35(51):16714–16722. doi: 10.1021/bi961911h. [DOI] [PubMed] [Google Scholar]
  32. Mok K. W., Cullis P. R. Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys J. 1997 Nov;73(5):2534–2545. doi: 10.1016/S0006-3495(97)78282-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Needham D., Evans E. Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 degrees C below to 10 degrees C above the liquid crystal-crystalline phase transition at 24 degrees C. Biochemistry. 1988 Oct 18;27(21):8261–8269. doi: 10.1021/bi00421a041. [DOI] [PubMed] [Google Scholar]
  34. Papahadjopoulos D., Poste G. Calcium-induced phase separation and fusion in phospholipid membranes. Biophys J. 1975 Sep;15(9):945–948. doi: 10.1016/S0006-3495(75)85872-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Papahadjopoulos D., Vail W. J., Jacobson K., Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta. 1975 Jul 3;394(3):483–491. doi: 10.1016/0005-2736(75)90299-0. [DOI] [PubMed] [Google Scholar]
  36. Rand R. P., Kachar B., Reese T. S. Dynamic morphology of calcium-induced interactions between phosphatidylserine vesicles. Biophys J. 1985 Apr;47(4):483–489. doi: 10.1016/S0006-3495(85)83941-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sackmann E. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994 Jun 6;346(1):3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
  38. Safinya CR, Sirota EB, Roux D, Smith GS. Universality in interacting membranes: The effect of cosurfactants on the interfacial rigidity. Phys Rev Lett. 1989 Mar 6;62(10):1134–1137. doi: 10.1103/PhysRevLett.62.1134. [DOI] [PubMed] [Google Scholar]
  39. Schwichtenhövel C., Deuticke B., Haest C. W. Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane. Biochim Biophys Acta. 1992 Oct 19;1111(1):35–44. doi: 10.1016/0005-2736(92)90271-m. [DOI] [PubMed] [Google Scholar]
  40. Semple S. C., Klimuk S. K., Harasym T. O., Dos Santos N., Ansell S. M., Wong K. F., Maurer N., Stark H., Cullis P. R., Hope M. J. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta. 2001 Feb 9;1510(1-2):152–166. doi: 10.1016/s0005-2736(00)00343-6. [DOI] [PubMed] [Google Scholar]
  41. Siegel D. P., Epand R. M. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J. 1997 Dec;73(6):3089–3111. doi: 10.1016/S0006-3495(97)78336-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Siegel D. P., Green W. J., Talmon Y. The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. Biophys J. 1994 Feb;66(2 Pt 1):402–414. doi: 10.1016/s0006-3495(94)80790-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Slater J. L., Huang C. H. Interdigitated bilayer membranes. Prog Lipid Res. 1988;27(4):325–359. doi: 10.1016/0163-7827(88)90010-0. [DOI] [PubMed] [Google Scholar]
  44. Slater S. J., Ho C., Taddeo F. J., Kelly M. B., Stubbs C. D. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Biochemistry. 1993 Apr 13;32(14):3714–3721. doi: 10.1021/bi00065a025. [DOI] [PubMed] [Google Scholar]
  45. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  46. Tocanne J. F., Teissié J. Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. Biochim Biophys Acta. 1990 Feb 28;1031(1):111–142. doi: 10.1016/0304-4157(90)90005-w. [DOI] [PubMed] [Google Scholar]
  47. Vierl U., Löbbecke L., Nagel N., Cevc G. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures. Biophys J. 1994 Sep;67(3):1067–1079. doi: 10.1016/S0006-3495(94)80572-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Xu Y., Hui S. W., Frederik P., Szoka F. C., Jr Physicochemical characterization and purification of cationic lipoplexes. Biophys J. 1999 Jul;77(1):341–353. doi: 10.1016/S0006-3495(99)76894-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES