Abstract
We have prepared acyl chain-defined D-erythro-sphingomyelins and D-erythro-dihydrosphingomyelins and compared their properties in monolayer and bilayer membranes. Surface pressure/molecular area isotherms of D-erythro-N-16:0-sphingomyelin (16:0-SM) and D-erythro-N-16:0-dihydrosphingomyelin (16:0-DHSM) show very similar packing properties, except that the expanded-to-condensed phase transition (crystallization) occurs at a lower surface pressure for 16:0-DHSM. The measured surface potential was generally about 100 mV less for 16:0-DHSM monolayers compared to 16:0-SM monolayers. The condensed domains (crystals) that formed in 16:0-SM monolayers as a function of compression displayed star-shaped morphology when viewed under an epifluorescence microscope. 16:0-DHSM monolayers did not form similar crystals upon compression. 16:0-DHSM was degraded much faster by sphingomyelinase from Staphylococcus aureus than 16:0-SM (10-fold difference in enzyme activity needed for comparable hydrolytic rate). Cholesterol desorption from 16:0-DHSM to cyclodextrin was slightly slower (approximately 20%) than the rate measured from 16:0-SM monolayers (at 60 mol % cholesterol). The bilayer melting temperature of 16:0-DHSM was 47.7 degrees C (DeltaH 8.3 kcal/mol) whereas it was 41.2 degrees C for 16:0-SM (DeltaH 8.1 kcal/mol). Cholesterol/16:0-DHSM bilayers (15 mol % sterol) had more condensed domains than comparable 16:0-SM bilayers, as evidenced from the quenching resistance of DPH in DHSM membranes. We conclude that cholesterol interacts more favorably with 16:0-DHSM and that the membranes are more condensed than comparable 16:0-SM-containing membranes.
Full Text
The Full Text of this article is available as a PDF (315.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed S. N., Brown D. A., London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997 Sep 9;36(36):10944–10953. doi: 10.1021/bi971167g. [DOI] [PubMed] [Google Scholar]
- Barenholz Y., Suurkuusk J., Mountcastle D., Thompson T. E., Biltonen R. L. A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins. Biochemistry. 1976 Jun 1;15(11):2441–2447. doi: 10.1021/bi00656a030. [DOI] [PubMed] [Google Scholar]
- Borchman D., Byrdwell W. C., Yappert M. C. Thermodynamic phase transition parameters of human lens dihydrosphingomyelin. Ophthalmic Res. 1996;28 (Suppl 1):81–85. doi: 10.1159/000267977. [DOI] [PubMed] [Google Scholar]
- Brown R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 1998 Jan;111(Pt 1):1–9. doi: 10.1242/jcs.111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byrdwell W. C., Borchman D. Liquid chromatography/mass-spectrometric characterization of sphingomyelin and dihydrosphingomyelin of human lens membranes. Ophthalmic Res. 1997;29(4):191–206. doi: 10.1159/000268014. [DOI] [PubMed] [Google Scholar]
- Grainger D. W., Reichert A., Ringsdorf H., Salesse C. Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochim Biophys Acta. 1990 Apr 30;1023(3):365–379. doi: 10.1016/0005-2736(90)90128-b. [DOI] [PubMed] [Google Scholar]
- Jungner M., Ohvo H., Slotte J. P. Interfacial regulation of bacterial sphingomyelinase activity. Biochim Biophys Acta. 1997 Feb 18;1344(3):230–240. doi: 10.1016/s0005-2760(96)00147-6. [DOI] [PubMed] [Google Scholar]
- Koval M., Pagano R. E. Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta. 1991 Mar 12;1082(2):113–125. doi: 10.1016/0005-2760(91)90184-j. [DOI] [PubMed] [Google Scholar]
- Lange Y., Ramos B. V. Analysis of the distribution of cholesterol in the intact cell. J Biol Chem. 1983 Dec 25;258(24):15130–15134. [PubMed] [Google Scholar]
- Lange Y., Swaisgood M. H., Ramos B. V., Steck T. L. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem. 1989 Mar 5;264(7):3786–3793. [PubMed] [Google Scholar]
- Li L. K., So L., Spector A. Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J Lipid Res. 1985 May;26(5):600–609. [PubMed] [Google Scholar]
- Mattjus P., Slotte J. P. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? Chem Phys Lipids. 1996 Jun 17;81(1):69–80. doi: 10.1016/0009-3084(96)02535-2. [DOI] [PubMed] [Google Scholar]
- Ohvo H., Olsio C., Slotte J. P. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts. Biochim Biophys Acta. 1997 Nov 15;1349(2):131–141. doi: 10.1016/s0005-2760(97)00126-4. [DOI] [PubMed] [Google Scholar]
- Ohvo H., Slotte J. P. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry. 1996 Jun 18;35(24):8018–8024. doi: 10.1021/bi9528816. [DOI] [PubMed] [Google Scholar]
- Patton S. Correlative relationship of cholesterol and sphingomyelin in cell membranes. J Theor Biol. 1970 Dec;29(3):489–491. doi: 10.1016/0022-5193(70)90111-6. [DOI] [PubMed] [Google Scholar]
- Phillips M. C., Johnson W. J., Rothblat G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta. 1987 Jun 24;906(2):223–276. doi: 10.1016/0304-4157(87)90013-x. [DOI] [PubMed] [Google Scholar]
- Pörn M. I., Ares M. P., Slotte J. P. Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution. J Lipid Res. 1993 Aug;34(8):1385–1392. [PubMed] [Google Scholar]
- Ramstedt B., Leppimäki P., Axberg M., Slotte J. P. Analysis of natural and synthetic sphingomyelins using high-performance thin-layer chromatography. Eur J Biochem. 1999 Dec;266(3):997–1002. doi: 10.1046/j.1432-1327.1999.00938.x. [DOI] [PubMed] [Google Scholar]
- Ramstedt B., Slotte J. P. Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins. Biophys J. 1999 Sep;77(3):1498–1506. doi: 10.1016/S0006-3495(99)76997-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramstedt B., Slotte J. P. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length. Biophys J. 1999 Feb;76(2):908–915. doi: 10.1016/S0006-3495(99)77254-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarmientos F., Schwarzmann G., Sandhoff K. Direct evidence by carbon-13 NMR spectroscopy for the erythro configuration of the sphingoid moiety in Gaucher cerebroside and other natural sphingolipids. Eur J Biochem. 1985 Jan 2;146(1):59–64. doi: 10.1111/j.1432-1033.1985.tb08619.x. [DOI] [PubMed] [Google Scholar]
- Schneider P. B., Kennedy E. P. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J Lipid Res. 1967 May;8(3):202–209. [PubMed] [Google Scholar]
- Shah D. O., Schulman J. H. Interaction of calcium ions with lecithin and sphingomyelin monolayers. Lipids. 1967 Jan;2(1):21–27. doi: 10.1007/BF02531995. [DOI] [PubMed] [Google Scholar]
- Shinitzky M., Barenholz Y. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem. 1974 Apr 25;249(8):2652–2657. [PubMed] [Google Scholar]
- Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
- Slotte J. P., Bierman E. L. Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J. 1988 Mar 15;250(3):653–658. doi: 10.1042/bj2500653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slotte J. P. Direct observation of the action of cholesterol oxidase in monolayers. Biochim Biophys Acta. 1995 Nov 16;1259(2):180–186. doi: 10.1016/0005-2760(95)00161-5. [DOI] [PubMed] [Google Scholar]
- Slotte J. P. Effect of sterol structure on molecular interactions and lateral domain formation in monolayers containing dipalmitoyl phosphatidylcholine. Biochim Biophys Acta. 1995 Jul 26;1237(2):127–134. doi: 10.1016/0005-2736(95)00096-l. [DOI] [PubMed] [Google Scholar]
- Slotte J. P. Lateral domain formation in mixed monolayers containing cholesterol and dipalmitoylphosphatidylcholine or N-palmitoylsphingomyelin. Biochim Biophys Acta. 1995 May 4;1235(2):419–427. doi: 10.1016/0005-2736(95)80031-a. [DOI] [PubMed] [Google Scholar]
- Slotte J. P., Mattjus P. Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface--a comparative study with two different reporter molecules. Biochim Biophys Acta. 1995 Jan 3;1254(1):22–29. doi: 10.1016/0005-2760(94)00159-v. [DOI] [PubMed] [Google Scholar]
- Verger R., De Haas G. H. Enzyme reactions in a membrane model. 1. A new technique to study enzyme reactions in monolayers. Chem Phys Lipids. 1973 Feb;10(2):127–136. doi: 10.1016/0009-3084(73)90009-1. [DOI] [PubMed] [Google Scholar]
- Xu X., London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry. 2000 Feb 8;39(5):843–849. doi: 10.1021/bi992543v. [DOI] [PubMed] [Google Scholar]
- Yedgar S., Cohen R., Gatt S., Barenholz Y. Hydrolysis of monomolecular layers of synthetic sphingomyelins by sphingomyelinase of Staphylococcus aureus. Biochem J. 1982 Mar 1;201(3):597–603. doi: 10.1042/bj2010597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Tscharner V., McConnell H. M. An alternative view of phospholipid phase behavior at the air-water interface. Microscope and film balance studies. Biophys J. 1981 Nov;36(2):409–419. doi: 10.1016/S0006-3495(81)84740-6. [DOI] [PMC free article] [PubMed] [Google Scholar]