Abstract
A number of trinucleotide sequences in DNA can form compact and stable hairpin loops that may have significance for DNA replication and transcription. The conformational analysis of these motifs is important for an understanding of the function and design of nucleic acid structures. Extensive conformational searches have been performed on three experimentally known trinucleotide hairpin loops (AGC, AAA, and GCA) closed by a four-base-pair stem. An implicit solvation model based on the generalized Born method has been employed during energy minimization and conformational search. In addition, energy-minimized conformers were evaluated using a finite-difference Poisson-Boltzmann approach. For all three loop sequences, conformations close to experiment were found as lowest-energy structures among several thousand alternative energy minima. The inclusion of reaction-field contributions was found to be important for a realistic conformer ranking. Most generated hairpin loop structures within approximately 5 kcal x mol(-1) of the lowest-energy structure have a similar topology. Structures within approximately 10 kcal x mol(-1) could be classified into about five structural families representing distinct arrangements of loop nucleotides. Although a large number of backbone torsion angle combinations were compatible with each structural class, some specific patterns could be identified. Harmonic mode analysis was used to account for differences in conformational flexibility of low-energy sub-states. Class-specific differences in the pattern of atomic fluctuations along the sequence were observed; however, inclusion of conformational entropy contributions did not change ranking of structural classes. For an additional loop sequence (AAG) with no available experimental structure, the approach suggests a lowest-energy loop topology overall similar to the other three loop sequences but closed by a different non-canonical base-pairing scheme.
Full Text
The Full Text of this article is available as a PDF (231.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amir-Aslani A., Mauffret O., Sourgen F., Neplaz S., Maroun R. G., Lescot E., Tevanian G., Fermandjian S. The hairpin structure of a topoisomerase II site DNA strand analyzed by combined NMR and energy minimization methods. J Mol Biol. 1996 Nov 15;263(5):776–788. doi: 10.1006/jmbi.1996.0615. [DOI] [PubMed] [Google Scholar]
- Astell C. R., Chow M. B., Ward D. C. Sequence analysis of the termini of virion and replicative forms of minute virus of mice DNA suggests a modified rolling hairpin model for autonomous parvovirus DNA replication. J Virol. 1985 Apr;54(1):171–177. doi: 10.1128/jvi.54.1.171-177.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayadi L., Coulombeau C., Lavery R. Abasic sites in duplex DNA: molecular modeling of sequence-dependent effects on conformation. Biophys J. 1999 Dec;77(6):3218–3226. doi: 10.1016/S0006-3495(99)77152-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X., Mariappan S. V., Catasti P., Ratliff R., Moyzis R. K., Laayoun A., Smith S. S., Bradbury E. M., Gupta G. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5199–5203. doi: 10.1073/pnas.92.11.5199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou S. H., Tseng Y. Y., Chu B. Y. Stable formation of a pyrimidine-rich loop hairpin in a cruciform promoter. J Mol Biol. 1999 Sep 17;292(2):309–320. doi: 10.1006/jmbi.1999.3066. [DOI] [PubMed] [Google Scholar]
- Chou S. H., Tseng Y. Y., Wang S. W. Stable sheared A.C pair in DNA hairpins. J Mol Biol. 1999 Mar 26;287(2):301–313. doi: 10.1006/jmbi.1999.2564. [DOI] [PubMed] [Google Scholar]
- Chou S. H., Zhu L., Gao Z., Cheng J. W., Reid B. R. Hairpin loops consisting of single adenine residues closed by sheared A.A and G.G pairs formed by the DNA triplets AAA and GAG: solution structure of the d(GTACAAAGTAC) hairpin. J Mol Biol. 1996 Dec 20;264(5):981–1001. doi: 10.1006/jmbi.1996.0691. [DOI] [PubMed] [Google Scholar]
- Cusack S. RNA-protein complexes. Curr Opin Struct Biol. 1999 Feb;9(1):66–73. doi: 10.1016/s0959-440x(99)80009-8. [DOI] [PubMed] [Google Scholar]
- Erie D. A., Suri A. K., Breslauer K. J., Jones R. A., Olson W. K. Theoretical predictions of DNA hairpin loop conformations: correlations with thermodynamic and spectroscopic data. Biochemistry. 1993 Jan 19;32(2):436–454. doi: 10.1021/bi00053a008. [DOI] [PubMed] [Google Scholar]
- Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
- Gautheret D., Major F., Cedergren R. Modeling the three-dimensional structure of RNA using discrete nucleotide conformational sets. J Mol Biol. 1993 Feb 20;229(4):1049–1064. doi: 10.1006/jmbi.1993.1104. [DOI] [PubMed] [Google Scholar]
- Glucksmann-Kuis M. A., Dai X., Markiewicz P., Rothman-Denes L. B. E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell. 1996 Jan 12;84(1):147–154. doi: 10.1016/s0092-8674(00)81001-6. [DOI] [PubMed] [Google Scholar]
- Glucksmann M. A., Markiewicz P., Malone C., Rothman-Denes L. B. Specific sequences and a hairpin structure in the template strand are required for N4 virion RNA polymerase promoter recognition. Cell. 1992 Aug 7;70(3):491–500. doi: 10.1016/0092-8674(92)90173-a. [DOI] [PubMed] [Google Scholar]
- Heus H. A., Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 1991 Jul 12;253(5016):191–194. doi: 10.1126/science.1712983. [DOI] [PubMed] [Google Scholar]
- Hirao I., Kawai G., Yoshizawa S., Nishimura Y., Ishido Y., Watanabe K., Miura K. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 1994 Feb 25;22(4):576–582. doi: 10.1093/nar/22.4.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirao I., Nishimura Y., Tagawa Y., Watanabe K., Miura K. Extraordinarily stable mini-hairpins: electrophoretical and thermal properties of the various sequence variants of d(GCGAAAGC) and their effect on DNA sequencing. Nucleic Acids Res. 1992 Aug 11;20(15):3891–3896. doi: 10.1093/nar/20.15.3891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jucker F. M., Pardi A. GNRA tetraloops make a U-turn. RNA. 1995 Apr;1(2):219–222. [PMC free article] [PubMed] [Google Scholar]
- Levitt M., Sander C., Stern P. S. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol. 1985 Feb 5;181(3):423–447. doi: 10.1016/0022-2836(85)90230-x. [DOI] [PubMed] [Google Scholar]
- Maier A., Sklenar H., Kratky H. F., Renner A., Schuster P. Force field based conformational analysis of RNA structural motifs: GNRA tetraloops and their pyrimidine relatives. Eur Biophys J. 1999;28(7):564–573. doi: 10.1007/s002490050238. [DOI] [PubMed] [Google Scholar]
- Major F., Turcotte M., Gautheret D., Lapalme G., Fillion E., Cedergren R. The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science. 1991 Sep 13;253(5025):1255–1260. doi: 10.1126/science.1716375. [DOI] [PubMed] [Google Scholar]
- Mitas M., Yu A., Dill J., Haworth I. S. The trinucleotide repeat sequence d(CGG)15 forms a heat-stable hairpin containing Gsyn. Ganti base pairs. Biochemistry. 1995 Oct 3;34(39):12803–12811. doi: 10.1021/bi00039a041. [DOI] [PubMed] [Google Scholar]
- Patel D. J. Adaptive recognition in RNA complexes with peptides and protein modules. Curr Opin Struct Biol. 1999 Feb;9(1):74–87. doi: 10.1016/s0959-440x(99)80010-4. [DOI] [PubMed] [Google Scholar]
- Sandusky P., Wooten E. W., Kurochkin A. V., Kavanaugh T., Mandecki W., Zuiderweg E. R. Occurrence, solution structure and stability of DNA hairpins stabilized by a GA/CG helix unit. Nucleic Acids Res. 1995 Nov 25;23(22):4717–4725. doi: 10.1093/nar/23.22.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srinivasan J., Miller J., Kollman P. A., Case D. A. Continuum solvent studies of the stability of RNA hairpin loops and helices. J Biomol Struct Dyn. 1998 Dec;16(3):671–682. doi: 10.1080/07391102.1998.10508279. [DOI] [PubMed] [Google Scholar]
- Williams D. J., Hall K. B. Experimental and computational studies of the G[UUCG]C RNA tetraloop. J Mol Biol. 2000 Apr 14;297(5):1045–1061. doi: 10.1006/jmbi.2000.3623. [DOI] [PubMed] [Google Scholar]
- Williams D. J., Hall K. B. Experimental and theoretical studies of the effects of deoxyribose substitutions on the stability of the UUCG tetraloop. J Mol Biol. 2000 Mar 17;297(1):251–265. doi: 10.1006/jmbi.2000.3547. [DOI] [PubMed] [Google Scholar]
- Williams D. J., Hall K. B. Unrestrained stochastic dynamics simulations of the UUCG tetraloop using an implicit solvation model. Biophys J. 1999 Jun;76(6):3192–3205. doi: 10.1016/S0006-3495(99)77471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshizawa S., Kawai G., Watanabe K., Miura K., Hirao I. GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins. Biochemistry. 1997 Apr 22;36(16):4761–4767. doi: 10.1021/bi961738p. [DOI] [PubMed] [Google Scholar]
- Yu A., Dill J., Mitas M. The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins. Nucleic Acids Res. 1995 Oct 25;23(20):4055–4057. doi: 10.1093/nar/23.20.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zacharias M. Comparison of molecular dynamics and harmonic mode calculations on RNA. Biopolymers. 2000 Dec;54(7):547–560. doi: 10.1002/1097-0282(200012)54:7<547::AID-BIP70>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- Zacharias M. Simulation of the structure and dynamics of nonhelical RNA motifs. Curr Opin Struct Biol. 2000 Jun;10(3):311–317. doi: 10.1016/s0959-440x(00)00089-0. [DOI] [PubMed] [Google Scholar]
- Zacharias M., Sklenar H. Analysis of the stability of looped-out and stacked-in conformations of an adenine bulge in DNA using a continuum model for solvent and ions. Biophys J. 1997 Dec;73(6):2990–3003. doi: 10.1016/S0006-3495(97)78328-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zacharias M., Sklenar H. Conformational analysis of single-base bulges in A-form DNA and RNA using a hierarchical approach and energetic evaluation with a continuum solvent model. J Mol Biol. 1999 Jun 4;289(2):261–275. doi: 10.1006/jmbi.1999.2760. [DOI] [PubMed] [Google Scholar]
- Zacharias M., Sklenar H. Conformational deformability of RNA: a harmonic mode analysis. Biophys J. 2000 May;78(5):2528–2542. doi: 10.1016/S0006-3495(00)76798-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu L., Chou S. H., Reid B. R. A single G-to-C change causes human centromere TGGAA repeats to fold back into hairpins. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12159–12164. doi: 10.1073/pnas.93.22.12159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu L., Chou S. H., Xu J., Reid B. R. Structure of a single-cytidine hairpin loop formed by the DNA triplet GCA. Nat Struct Biol. 1995 Nov;2(11):1012–1017. doi: 10.1038/nsb1195-1012. [DOI] [PubMed] [Google Scholar]
- van Dongen M. J., Mooren M. M., Willems E. F., van der Marel G. A., van Boom J. H., Wijmenga S. S., Hilbers C. W. Structural features of the DNA hairpin d(ATCCTA-GTTA-TAGGAT): formation of a G-A base pair in the loop. Nucleic Acids Res. 1997 Apr 15;25(8):1537–1547. doi: 10.1093/nar/25.8.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]