Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2372–2385. doi: 10.1016/S0006-3495(01)76207-8

Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer.

S Franzen 1, L Kiger 1, C Poyart 1, J L Martin 1
PMCID: PMC1301426  PMID: 11325737

Abstract

Ultrafast time-resolved resonance Raman spectra of carbonmonoxy hemoglobin (Hb), nitroxy Hb, and deoxy Hb are compared to determine excited state decay mechanisms for both ligated and unligated hemes. Transient absorption and Raman data provide evidence for a sequential photophysical relaxation pathway common to both ligated and unligated forms of Hb* (photolyzed heme), in which the excited state 1Q decays sequentially: 1Q-->Hb*I-->Hb*II-->Hb ground state. Consistent with the observed kinetics, the lifetimes of these states are <50 fs, approximately 300 fs, and approximately 3 ps for 1Q, Hb*I, and Hb*II, respectively. The transient absorption data support the hypothesis that the Hb*I state results from an ultrafast iron-to-porphyrin ring charge transfer process. The Hb*II state arises from porphyrin ring-to-iron back charge transfer to produce a porphyrin ground state configuration a nonequilibrium iron d-orbital population. Equatorial d-pi* back-bonding of the heme iron to the porphyrin during the lifetime of the Hb*II state accounts for the time-resolved resonance Raman shifts on the approximately 3 ps time scale. The proposed photophysical pathway suggests that iron-to-ring charge transfer is the key event in the mechanism of photolysis of diatomic ligands following a porphyrin ring pi-pi* transition.

Full Text

The Full Text of this article is available as a PDF (157.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992 Jun 26;256(5065):1796–1798. doi: 10.1126/science.1615323. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J., Chothia C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol. 1979 Apr 5;129(2):175–220. doi: 10.1016/0022-2836(79)90277-8. [DOI] [PubMed] [Google Scholar]
  3. Carlson M. L., Regan R., Elber R., Li H., Phillips G. N., Jr, Olson J. S., Gibson Q. H. Nitric oxide recombination to double mutants of myoglobin: role of ligand diffusion in a fluctuating heme pocket. Biochemistry. 1994 Sep 6;33(35):10597–10606. doi: 10.1021/bi00201a005. [DOI] [PubMed] [Google Scholar]
  4. Chance M. R., Courtney S. H., Chavez M. D., Ondrias M. R., Friedman J. M. O2 and CO reactions with heme proteins: quantum yields and geminate recombination on picosecond time scales. Biochemistry. 1990 Jun 12;29(23):5537–5545. doi: 10.1021/bi00475a018. [DOI] [PubMed] [Google Scholar]
  5. Cornelius P. A., Hochstrasser R. M., Steele A. W. Ultrafast relaxation in picosecond photolysis of nitrosylhemoglobin. J Mol Biol. 1983 Jan 5;163(1):119–128. doi: 10.1016/0022-2836(83)90032-3. [DOI] [PubMed] [Google Scholar]
  6. Findsen E. W., Friedman J. M., Ondrias M. R., Simon S. R. Picosecond time-resolved resonance Raman studies of hemoglobin: implications for reactivity. Science. 1985 Aug 16;229(4714):661–665. doi: 10.1126/science.4023704. [DOI] [PubMed] [Google Scholar]
  7. Franzen S., Bohn B., Poyart C., DePillis G., Boxer S. G., Martin J. L. Functional aspects of ultra-rapid heme doming in hemoglobin, myoglobin, and the myoglobin mutant H93G. J Biol Chem. 1995 Jan 27;270(4):1718–1720. doi: 10.1074/jbc.270.4.1718. [DOI] [PubMed] [Google Scholar]
  8. Franzen S., Bohn B., Poyart C., Martin J. L. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species. Biochemistry. 1995 Jan 31;34(4):1224–1237. doi: 10.1021/bi00004a016. [DOI] [PubMed] [Google Scholar]
  9. Franzen S., Lambry J. C., Bohn B., Poyart C., Martin J. L. Direct evidence for the role of haem doming as the primary event in the cooperative transition of haemoglobin. Nat Struct Biol. 1994 Apr;1(4):230–233. doi: 10.1038/nsb0494-230. [DOI] [PubMed] [Google Scholar]
  10. Ghosh A., Wondimagegn T., Gonzalez E., Halvorsen I. Valence tautomerism and macrocycle ruffling in nickel(III) porphyrins. J Inorg Biochem. 2000 Jan 15;78(1):79–82. doi: 10.1016/s0162-0134(99)00212-3. [DOI] [PubMed] [Google Scholar]
  11. Greene B. I., Hochstrasser R. M., Weisman R. B., Eaton W. A. Spectroscopic studies of oxy- and carbonmonoxyhemoglobin after pulsed optical excitation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5255–5259. doi: 10.1073/pnas.75.11.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartmann H., Zinser S., Komninos P., Schneider R. T., Nienhaus G. U., Parak F. X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7013–7016. doi: 10.1073/pnas.93.14.7013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffman B. M., Gibson Q. H. On the photosensitivity of liganded hemoproteins and their metal-substituted analogues. Proc Natl Acad Sci U S A. 1978 Jan;75(1):21–25. doi: 10.1073/pnas.75.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hofrichter J., Sommer J. H., Henry E. R., Eaton W. A. Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2235–2239. doi: 10.1073/pnas.80.8.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katsube Takao, Ogawa Kenji, Hamaguchi Kanako, Shimao Kazuya, Yamaguchi Kentaro, Konno Soichi, Shimakawa Takeshi, Naritaka Yoshihiko, Yagawa Hirokazu, Aiba Motohiko. Modification of endoscopic aspiration mucosectomy (EAM) for early gastric cancer: EAM with pre-cutting. Hepatogastroenterology. 2002 Nov-Dec;49(48):1510–1513. [PubMed] [Google Scholar]
  16. Keyes M. H., Falley M., Lumry R. Studies of heme proteins. II. Preparation and thermodynamic properties of sperm whale myoglobin. J Am Chem Soc. 1971 Apr 21;93(8):2035–2040. doi: 10.1021/ja00737a031. [DOI] [PubMed] [Google Scholar]
  17. Martin J. L., Migus A., Poyart C., Lecarpentier Y., Astier R., Antonetti A. Femtosecond photolysis of CO-ligated protoheme and hemoproteins: appearance of deoxy species with a 350-fsec time constant. Proc Natl Acad Sci U S A. 1983 Jan;80(1):173–177. doi: 10.1073/pnas.80.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martin J. L., Migus A., Poyart C., Lecarpentier Y., Astier R., Antonetti A. Spectral evidence for sub-picosecond iron displacement after ligand detachment from hemoproteins by femtosecond light pulses. EMBO J. 1983;2(10):1815–1819. doi: 10.1002/j.1460-2075.1983.tb01663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mills F. C., Ackers G. K., Gaud H. T., Gill S. J. Thermodynamic studies on ligand binding and subunit association of human hemoglobins. Enthalpies of binding O2 and CO to subunit chains of hemoglobin A. J Biol Chem. 1979 Apr 25;254(8):2875–2880. [PubMed] [Google Scholar]
  20. Mizutani Y., Kitagawa T. Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin. Science. 1997 Oct 17;278(5337):443–446. doi: 10.1126/science.278.5337.443. [DOI] [PubMed] [Google Scholar]
  21. Nagai K., Kitagawa T. Differences in Fe(II)-N epsilon(His-F8) stretching frequencies between deoxyhemoglobins in the two alternative quaternary structures. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2033–2037. doi: 10.1073/pnas.77.4.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perutz M. F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem. 1979;48:327–386. doi: 10.1146/annurev.bi.48.070179.001551. [DOI] [PubMed] [Google Scholar]
  23. Petrich J. W., Lambry J. C., Balasubramanian S., Lambright D. G., Boxer S. G., Martin J. L. Ultrafast measurements of geminate recombination of NO with site-specific mutants of human myoglobin. J Mol Biol. 1994 May 6;238(3):437–444. doi: 10.1006/jmbi.1994.1302. [DOI] [PubMed] [Google Scholar]
  24. Petrich J. W., Martin J. L., Houde D., Poyart C., Orszag A. Time-resolved Raman spectroscopy with subpicosecond resolution: vibrational cooling and delocalization of strain energy in photodissociated (carbonmonoxy)hemoglobin. Biochemistry. 1987 Dec 1;26(24):7914–7923. doi: 10.1021/bi00398a056. [DOI] [PubMed] [Google Scholar]
  25. Petrich J. W., Poyart C., Martin J. L. Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme. Biochemistry. 1988 May 31;27(11):4049–4060. doi: 10.1021/bi00411a022. [DOI] [PubMed] [Google Scholar]
  26. Schlichting I., Berendzen J., Phillips G. N., Jr, Sweet R. M. Crystal structure of photolysed carbonmonoxy-myoglobin. Nature. 1994 Oct 27;371(6500):808–812. doi: 10.1038/371808a0. [DOI] [PubMed] [Google Scholar]
  27. Srajer V., Champion P. M. Investigations of optical line shapes and kinetic hole burning in myoglobin. Biochemistry. 1991 Jul 30;30(30):7390–7402. doi: 10.1021/bi00244a005. [DOI] [PubMed] [Google Scholar]
  28. Srajer V., Teng T., Ursby T., Pradervand C., Ren Z., Adachi S., Schildkamp W., Bourgeois D., Wulff M., Moffat K. Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science. 1996 Dec 6;274(5293):1726–1729. doi: 10.1126/science.274.5293.1726. [DOI] [PubMed] [Google Scholar]
  29. Stavrov S. S. The effect of iron displacement out of the porphyrin plane on the resonance Raman spectra of heme proteins and iron porphyrins. Biophys J. 1993 Nov;65(5):1942–1950. doi: 10.1016/S0006-3495(93)81265-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Teng T. Y., Srajer V., Moffat K. Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nat Struct Biol. 1994 Oct;1(10):701–705. doi: 10.1038/nsb1094-701. [DOI] [PubMed] [Google Scholar]
  31. Tsubaki M., Srivastava R. B., Yu N. T. Resonance Raman investigation of carbon monoxide bonding in (carbon monoxy)hemoglobin and -myoglobin: detection of Fe-CO stretching and Fe-C-O bending vibrations and influence of the quaternary structure change. Biochemistry. 1982 Mar 16;21(6):1132–1140. doi: 10.1021/bi00535a004. [DOI] [PubMed] [Google Scholar]
  32. Walda K. N., Liu X. Y., Sharma V. S., Magde D. Geminate recombination of diatomic ligands CO, O2, and NO with myoglobin. Biochemistry. 1994 Mar 1;33(8):2198–2209. doi: 10.1021/bi00174a029. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES