Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2386–2395. doi: 10.1016/S0006-3495(01)76208-X

Roles of cytoplasmic arginine and threonine in chloride transport by the bacteriorhodopsin mutant D85T.

S Paula 1, J Tittor 1, D Oesterhelt 1
PMCID: PMC1301427  PMID: 11325738

Abstract

In the light-driven anion pump halorhodopsin (HR), the residues arginine 200 and threonine 203 are involved in anion release at the cytoplasmic side of the membrane. Because of large sequence homology and great structural similarities between HR and bacteriorhodopsin (BR), it has been suggested that anion translocation by HR and by the chloride-pumping BR mutant BR-D85T occurs by the same mechanism. Consequently, the functions of the R200/T203 pair in HR should be the same as those of the corresponding pair in BR-D85T (R175/T178). We have put this hypothesis to a test by creating two mutants of BR-D85T in which R175 and T178 were replaced by glutamine and valine, respectively. Chloride transport activities were essentially the same for all three mutants, whereas chloride binding and the kinetics of parts of the photocycle were markedly affected by the replacement of T178. In contrast, the consequences of mutating R175 proved to be less significant. These findings are consistent with evidence obtained on HR and therefore support the idea that the respective mechanistic roles of the cytoplasmic arginine/threonine pairs in HR and BR-D85T are equal.

Full Text

The Full Text of this article is available as a PDF (124.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexiev U., Mollaaghababa R., Khorana H. G., Heyn M. P. Evidence for long range allosteric interactions between the extracellular and cytoplasmic parts of bacteriorhodopsin from the mutant R82A and its second site revertant R82A/G231C. J Biol Chem. 2000 May 5;275(18):13431–13440. doi: 10.1074/jbc.275.18.13431. [DOI] [PubMed] [Google Scholar]
  2. Ames J. B., Raap J., Lugtenburg J., Mathies R. A. Resonance Raman study of halorhodopsin photocycle kinetics, chromophore structure, and chloride-pumping mechanism. Biochemistry. 1992 Dec 22;31(50):12546–12554. doi: 10.1021/bi00165a002. [DOI] [PubMed] [Google Scholar]
  3. Balashov S. P., Imasheva E. S., Govindjee R., Ebrey T. G. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys J. 1996 Jan;70(1):473–481. doi: 10.1016/S0006-3495(96)79591-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown L. S., Needleman R., Lanyi J. K. Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism. Biochemistry. 1996 Dec 17;35(50):16048–16054. doi: 10.1021/bi9622938. [DOI] [PubMed] [Google Scholar]
  5. Dioumaev A. K., Braiman M. S. Nano- and microsecond time-resolved FTIR spectroscopy of the halorhodopsin photocycle. Photochem Photobiol. 1997 Dec;66(6):755–763. doi: 10.1111/j.1751-1097.1997.tb03220.x. [DOI] [PubMed] [Google Scholar]
  6. Essen L., Siegert R., Lehmann W. D., Oesterhelt D. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11673–11678. doi: 10.1073/pnas.95.20.11673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferrando E., Schweiger U., Oesterhelt D. Homologous bacterio-opsin-encoding gene expression via site-specific vector integration. Gene. 1993 Mar 15;125(1):41–47. doi: 10.1016/0378-1119(93)90743-m. [DOI] [PubMed] [Google Scholar]
  8. Haupts U., Tittor J., Bamberg E., Oesterhelt D. General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochemistry. 1997 Jan 7;36(1):2–7. doi: 10.1021/bi962014g. [DOI] [PubMed] [Google Scholar]
  9. Havelka W. A., Henderson R., Oesterhelt D. Three-dimensional structure of halorhodopsin at 7 A resolution. J Mol Biol. 1995 Apr 7;247(4):726–738. doi: 10.1006/jmbi.1995.0176. [DOI] [PubMed] [Google Scholar]
  10. Hendler R. W., Shrager R. I. Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners. J Biochem Biophys Methods. 1994 Jan;28(1):1–33. doi: 10.1016/0165-022x(94)90061-2. [DOI] [PubMed] [Google Scholar]
  11. Hufnagel P., Schweiger U., Eckerskorn C., Oesterhelt D. Electrospray ionization mass spectrometry of genetically and chemically modified bacteriorhodopsins. Anal Biochem. 1996 Dec 1;243(1):46–54. doi: 10.1006/abio.1996.0480. [DOI] [PubMed] [Google Scholar]
  12. Ihara K., Umemura T., Katagiri I., Kitajima-Ihara T., Sugiyama Y., Kimura Y., Mukohata Y. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol. 1999 Jan 8;285(1):163–174. doi: 10.1006/jmbi.1998.2286. [DOI] [PubMed] [Google Scholar]
  13. Kalaidzidis I. V., Kalaidzidis Y. L., Kaulen A. D. Flash-induced voltage changes in halorhodopsin from Natronobacterium pharaonis. FEBS Lett. 1998 May 1;427(1):59–63. doi: 10.1016/s0014-5793(98)00394-9. [DOI] [PubMed] [Google Scholar]
  14. Kalaidzidis I. V., Kaulen A. D. Cl- -dependent photovoltage responses of bacteriorhodopsin: comparison of the D85T and D85S mutants and wild-type acid purple form. FEBS Lett. 1997 Dec 1;418(3):239–242. doi: 10.1016/s0014-5793(97)01390-2. [DOI] [PubMed] [Google Scholar]
  15. Kolbe M., Besir H., Essen L. O., Oesterhelt D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science. 2000 May 26;288(5470):1390–1396. doi: 10.1126/science.288.5470.1390. [DOI] [PubMed] [Google Scholar]
  16. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  17. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  18. Lanyi J. K. Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiol Rev. 1990 Apr;70(2):319–330. doi: 10.1152/physrev.1990.70.2.319. [DOI] [PubMed] [Google Scholar]
  19. Ludmann K., Ibron G., Lanyi J. K., Váró G. Charge motions during the photocycle of pharaonis halorhodopsin. Biophys J. 2000 Feb;78(2):959–966. doi: 10.1016/S0006-3495(00)76653-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science. 1999 Oct 8;286(5438):255–261. doi: 10.1126/science.286.5438.255. [DOI] [PubMed] [Google Scholar]
  21. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
  22. Nagle J. F., Parodi L. A., Lozier R. H. Procedure for testing kinetic models of the photocycle of bacteriorhodopsin. Biophys J. 1982 May;38(2):161–174. doi: 10.1016/S0006-3495(82)84543-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  24. Oesterhelt D. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol. 1998 Aug;8(4):489–500. doi: 10.1016/s0959-440x(98)80128-0. [DOI] [PubMed] [Google Scholar]
  25. Papadopoulos G., Dencher N. A., Zaccai G., Büldt G. Water molecules and exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by neutron diffraction. Elements of the proton pathway? J Mol Biol. 1990 Jul 5;214(1):15–19. doi: 10.1016/0022-2836(90)90140-h. [DOI] [PubMed] [Google Scholar]
  26. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  27. Rüdiger M., Haupts U., Gerwert K., Oesterhelt D. Chemical reconstitution of a chloride pump inactivated by a single point mutation. EMBO J. 1995 Apr 18;14(8):1599–1606. doi: 10.1002/j.1460-2075.1995.tb07148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rüdiger M., Oesterhelt D. Specific arginine and threonine residues control anion binding and transport in the light-driven chloride pump halorhodopsin. EMBO J. 1997 Jul 1;16(13):3813–3821. doi: 10.1093/emboj/16.13.3813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sasaki J., Brown L. S., Chon Y. S., Kandori H., Maeda A., Needleman R., Lanyi J. K. Conversion of bacteriorhodopsin into a chloride ion pump. Science. 1995 Jul 7;269(5220):73–75. doi: 10.1126/science.7604281. [DOI] [PubMed] [Google Scholar]
  30. Schweiger U., Tittor J., Oesterhelt D. Bacteriorhodopsin can function without a covalent linkage between retinal and protein. Biochemistry. 1994 Jan 18;33(2):535–541. doi: 10.1021/bi00168a019. [DOI] [PubMed] [Google Scholar]
  31. Tittor J., Haupts U., Haupts C., Oesterhelt D., Becker A., Bamberg E. Chloride and proton transport in bacteriorhodopsin mutant D85T: different modes of ion translocation in a retinal protein. J Mol Biol. 1997 Aug 22;271(3):405–416. doi: 10.1006/jmbi.1997.1204. [DOI] [PubMed] [Google Scholar]
  32. Tittor J., Oesterhelt D., Maurer R., Desel H., Uhl R. The photochemical cycle of halorhodopsin: absolute spectra of intermediates obtained by flash photolysis and fast difference spectra measurements. Biophys J. 1987 Dec;52(6):999–1006. doi: 10.1016/S0006-3495(87)83292-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tittor J., Schweiger U., Oesterhelt D., Bamberg E. Inversion of proton translocation in bacteriorhodopsin mutants D85N, D85T, and D85,96N. Biophys J. 1994 Oct;67(4):1682–1690. doi: 10.1016/S0006-3495(94)80642-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Váró G., Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry. 1995 Nov 7;34(44):14490–14499. doi: 10.1021/bi00044a027. [DOI] [PubMed] [Google Scholar]
  35. Váró G., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry. 1995 Nov 7;34(44):14500–14507. doi: 10.1021/bi00044a028. [DOI] [PubMed] [Google Scholar]
  36. Váró G., Zimányi L., Fan X., Sun L., Needleman R., Lanyi J. K. Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J. 1995 May;68(5):2062–2072. doi: 10.1016/S0006-3495(95)80385-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zimányi L., Lanyi J. K. Low-temperature photoreactions of halorhodopsin. 2. Description of the photocycle and its intermediates. Biochemistry. 1989 Feb 21;28(4):1662–1666. doi: 10.1021/bi00430a035. [DOI] [PubMed] [Google Scholar]
  38. Zimányi L., Lanyi J. K. Transient spectroscopy of bacterial rhodopsins with an optical multichannel analyzer. 2. Effects of anions on the halorhodopsin photocycle. Biochemistry. 1989 Jun 13;28(12):5172–5178. doi: 10.1021/bi00438a039. [DOI] [PubMed] [Google Scholar]
  39. Zimányi L., Ormos P., Lanyi J. K. Low-temperature photoreactions of halorhodopsin. 1. Detection of conformational substates of the chromoprotein. Biochemistry. 1989 Feb 21;28(4):1656–1661. doi: 10.1021/bi00430a034. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES