Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 May;80(5):2422–2430. doi: 10.1016/S0006-3495(01)76211-X

The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study.

M L Ferrer 1, R Duchowicz 1, B Carrasco 1, J G de la Torre 1, A U Acuña 1
PMCID: PMC1301430  PMID: 11325741

Abstract

There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosin-bovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time phi(BSA, 1 cP, 20 degrees C) = 40 +/- 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 x 84 x 84 x 31.5 A, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.

Full Text

The Full Text of this article is available as a PDF (209.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belford G. G., Belford R. L., Weber G. Dynamics of fluorescence polarization in macromolecules. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1392–1393. doi: 10.1073/pnas.69.6.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloomfield V., Dalton W. O., Van Holde K. E. Frictional coefficients of multisubunit structures. I. Theory. Biopolymers. 1967 Feb;5(2):135–148. doi: 10.1002/bip.1967.360050202. [DOI] [PubMed] [Google Scholar]
  3. Bloomfield V. The structure of bovine serum albumin at low pH. Biochemistry. 1966 Feb;5(2):684–689. doi: 10.1021/bi00866a039. [DOI] [PubMed] [Google Scholar]
  4. Carrasco B., García de la Torre J. Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys J. 1999 Jun;76(6):3044–3057. doi: 10.1016/S0006-3495(99)77457-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carter D. C., He X. M., Munson S. H., Twigg P. D., Gernert K. M., Broom M. B., Miller T. Y. Three-dimensional structure of human serum albumin. Science. 1989 Jun 9;244(4909):1195–1198. doi: 10.1126/science.2727704. [DOI] [PubMed] [Google Scholar]
  6. Carter D. C., He X. M. Structure of human serum albumin. Science. 1990 Jul 20;249(4966):302–303. doi: 10.1126/science.2374930. [DOI] [PubMed] [Google Scholar]
  7. Carter D. C., Ho J. X. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203. doi: 10.1016/s0065-3233(08)60640-3. [DOI] [PubMed] [Google Scholar]
  8. Castellano F. N., Dattelbaum J. D., Lakowicz J. R. Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups. Anal Biochem. 1998 Jan 15;255(2):165–170. doi: 10.1006/abio.1997.2468. [DOI] [PubMed] [Google Scholar]
  9. Curry S., Mandelkow H., Brick P., Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998 Sep;5(9):827–835. doi: 10.1038/1869. [DOI] [PubMed] [Google Scholar]
  10. Duchowicz R., Ferrer M. L., Acuña A. U. Kinetic spectroscopy of erythrosin phosphorescence and delayed fluorescence in aqueous solution at room temperature. Photochem Photobiol. 1998 Oct;68(4):494–501. [PubMed] [Google Scholar]
  11. Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
  12. Garcia de la Torre J., Navarro S., Lopez Martinez M. C., Diaz F. G., Lopez Cascales J. J. HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. Biophys J. 1994 Aug;67(2):530–531. doi: 10.1016/S0006-3495(94)80512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. García De La Torre J., Huertas M. L., Carrasco B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J. 2000 Feb;78(2):719–730. doi: 10.1016/S0006-3495(00)76630-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garland P. B., Moore C. H. Phosphorescence of protein-bound eosin and erythrosin. A possible probe for measurements of slow rotational mobility. Biochem J. 1979 Dec 1;183(3):561–572. doi: 10.1042/bj1830561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gentin M., Vincent M., Brochon J. C., Livesey A. K., Cittanova N., Gallay J. Time-resolved fluorescence of the single tryptophan residue in rat alpha-fetoprotein and rat serum albumin: analysis by the maximum-entropy method. Biochemistry. 1990 Nov 13;29(45):10405–10412. doi: 10.1021/bi00497a016. [DOI] [PubMed] [Google Scholar]
  16. Hagag N., Birnbaum E. R., Darnall D. W. Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin. Biochemistry. 1983 May 10;22(10):2420–2427. doi: 10.1021/bi00279a018. [DOI] [PubMed] [Google Scholar]
  17. Harding S. E. On the hydrodynamic analysis of macromolecular conformation. Biophys Chem. 1995 Jun-Jul;55(1-2):69–93. doi: 10.1016/0301-4622(94)00143-8. [DOI] [PubMed] [Google Scholar]
  18. He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358(6383):209–215. doi: 10.1038/358209a0. [DOI] [PubMed] [Google Scholar]
  19. Helms M. K., Petersen C. E., Bhagavan N. V., Jameson D. M. Time-resolved fluorescence studies on site-directed mutants of human serum albumin. FEBS Lett. 1997 May 12;408(1):67–70. doi: 10.1016/s0014-5793(97)00389-x. [DOI] [PubMed] [Google Scholar]
  20. Ho J. X., Holowachuk E. W., Norton E. J., Twigg P. D., Carter D. C. X-ray and primary structure of horse serum albumin (Equus caballus) at 0.27-nm resolution. Eur J Biochem. 1993 Jul 1;215(1):205–212. doi: 10.1111/j.1432-1033.1993.tb18024.x. [DOI] [PubMed] [Google Scholar]
  21. Hustedt E. J., Cobb C. E., Beth A. H., Beechem J. M. Measurement of rotational dynamics by the simultaneous nonlinear analysis of optical and EPR data. Biophys J. 1993 Mar;64(3):614–621. doi: 10.1016/S0006-3495(93)81420-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lakowicz J. R., Gryczynski I. Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation. Biophys Chem. 1992 Nov;45(1):1–6. doi: 10.1016/0301-4622(92)87017-d. [DOI] [PubMed] [Google Scholar]
  24. Luft A. J., Lorscheider F. L. Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism. Biochemistry. 1983 Dec 6;22(25):5978–5981. doi: 10.1021/bi00294a043. [DOI] [PubMed] [Google Scholar]
  25. Mateo C. R., Lillo M. P., González-Rodríguez J., Acuña A. U. Molecular order and fluidity of the plasma membrane of human platelets from time-resolved fluorescence depolarization. Eur Biophys J. 1991;20(1):41–52. doi: 10.1007/BF00183278. [DOI] [PubMed] [Google Scholar]
  26. Matulis D., Baumann C. G., Bloomfield V. A., Lovrien R. E. 1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers. 1999 May;49(6):451–458. doi: 10.1002/(SICI)1097-0282(199905)49:6<451::AID-BIP3>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  27. McMillan D. E. A comparison of five methods for obtaining the intrinsic viscosity of bovine serum albumin. Biopolymers. 1974;13(7):1367–1376. doi: 10.1002/bip.1974.360130708. [DOI] [PubMed] [Google Scholar]
  28. Montejo J. M., Naqvi K. R., Lillo M. P., González-Rodríguez J., Acuña A. U. Conformation of human fibrinogen in solution from polarized triplet spectroscopy. Biochemistry. 1992 Aug 25;31(33):7580–7586. doi: 10.1021/bi00148a020. [DOI] [PubMed] [Google Scholar]
  29. Munro I., Pecht I., Stryer L. Subnanosecond motions of tryptophan residues in proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):56–60. doi: 10.1073/pnas.76.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Small E. W., Isenberg I. Hydrodynamic properties of a rigid molecule: rotational and linear diffusion and fluorescence anisotropy. Biopolymers. 1977 Sep;16(9):1907–1928. doi: 10.1002/bip.1977.360160907. [DOI] [PubMed] [Google Scholar]
  31. Squire P. G., Moser P., O'Konski C. T. The hydrodynamic properties of bovine serum albumin monomer and dimer. Biochemistry. 1968 Dec;7(12):4261–4272. doi: 10.1021/bi00852a018. [DOI] [PubMed] [Google Scholar]
  32. Sugio S., Kashima A., Mochizuki S., Noda M., Kobayashi K. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 1999 Jun;12(6):439–446. doi: 10.1093/protein/12.6.439. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES