Abstract
The subdiffraction optical resolution that can be achieved using near-field optical microscopy has the potential to permit new approaches and insights into subcellular function and molecular dynamics. Despite the potential of this technology, it has been difficult to apply to cellular samples. One significant problem is that sample thickness causes the optical information to be comprised of a composite signal containing both near- and far-field fluorescence. To overcome this issue we have developed an approach in which a near-field optical fiber is translated toward the cell surface. The increase in fluorescence intensity during z-translation contains two components: a far-field fluorescence signal when the tip of the fiber is distant from the labeled cell, and combined near- and far-field fluorescence when the tip interacts with the cell surface. By fitting a regression curve to the far-field fluorescence intensity as the illumination aperture approaches the cell, it is possible to isolate near-field from far-field fluorescent signals. We demonstrate the ability to resolve actin filaments in chemically fixed, hydrated glial cells. A comparison of composite fluorescence signals with extracted near-field fluorescence demonstrates that this approach significantly increases the ability to detect subcellular structures at subdiffraction resolution.
Full Text
The Full Text of this article is available as a PDF (142.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ash E. A., Nicholls G. Super-resolution aperture scanning microscope. Nature. 1972 Jun 30;237(5357):510–512. doi: 10.1038/237510a0. [DOI] [PubMed] [Google Scholar]
- Betzig E., Chichester R. J. Single molecules observed by near-field scanning optical microscopy. Science. 1993 Nov 26;262(5138):1422–1425. doi: 10.1126/science.262.5138.1422. [DOI] [PubMed] [Google Scholar]
- Betzig E., Trautman J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 1992 Jul 10;257(5067):189–195. doi: 10.1126/science.257.5067.189. [DOI] [PubMed] [Google Scholar]
- Bui J. D., Zelles T., Lou H. J., Gallion V. L., Phillips M. I., Tan W. Probing intracellular dynamics in living cells with near-field optics. J Neurosci Methods. 1999 Jul 1;89(1):9–15. doi: 10.1016/s0165-0270(99)00032-1. [DOI] [PubMed] [Google Scholar]
- Haydon P. G., Marchese-Ragona S., Basarsky T. A., Szulczewski M., McCloskey M. Near-field confocal optical spectroscopy (NCOS): subdiffraction optical resolution for biological systems. J Microsc. 1996 Jun;182(Pt 3):208–216. [PubMed] [Google Scholar]
- Hollars C. W., Dunn R. C. Submicron structure in L-alpha-dipalmitoylphosphatidylcholine monolayers and bilayers probed with confocal, atomic force, and near-field microscopy. Biophys J. 1998 Jul;75(1):342–353. doi: 10.1016/S0006-3495(98)77518-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang J., Gheber L. A., Margolis L., Edidin M. Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys J. 1998 May;74(5):2184–2190. doi: 10.1016/S0006-3495(98)77927-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang J., Tamm L. K., Böhm, Ramalingam T. S., Betzig E., Edidin M. Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy. Science. 1995 Oct 27;270(5236):610–614. doi: 10.1126/science.270.5236.610. [DOI] [PubMed] [Google Scholar]
- Lewis A., Radko A., Ben Ami N., Palanker D., Lieberman K. Near-field scanning optical microscopy in cell biology. Trends Cell Biol. 1999 Feb;9(2):70–73. doi: 10.1016/s0962-8924(98)01437-8. [DOI] [PubMed] [Google Scholar]
- Marchese-Ragona S. P., Haydon P. G. Near-field scanning optical microscopy and near-field confocal optical spectroscopy: emerging techniques in biology. Ann N Y Acad Sci. 1997 May 30;820:196–207. doi: 10.1111/j.1749-6632.1997.tb46196.x. [DOI] [PubMed] [Google Scholar]
- Moers M. H., Ruiter A. G., Jalocha A., van Hulst N. F. Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy. Ultramicroscopy. 1995 Dec;61(1-4):279–283. doi: 10.1016/0304-3991(96)85133-3. [DOI] [PubMed] [Google Scholar]
- Nagy P., Jenei A., Kirsch A. K., Szöllosi J., Damjanovich S., Jovin T. M. Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci. 1999 Jun;112(Pt 11):1733–1741. doi: 10.1242/jcs.112.11.1733. [DOI] [PubMed] [Google Scholar]
- Parpura V., Basarsky T. A., Liu F., Jeftinija K., Jeftinija S., Haydon P. G. Glutamate-mediated astrocyte-neuron signalling. Nature. 1994 Jun 30;369(6483):744–747. doi: 10.1038/369744a0. [DOI] [PubMed] [Google Scholar]
- Subramaniam V., Kirsch A. K., Jovin T. M. Cell biological applications of scanning near-field optical microscopy (SNOM). Cell Mol Biol (Noisy-le-grand) 1998 Jul;44(5):689–700. [PubMed] [Google Scholar]
- Vickery S. A., Dunn R. C. Scanning near-field fluorescence resonance energy transfer microscopy. Biophys J. 1999 Apr;76(4):1812–1818. doi: 10.1016/S0006-3495(99)77341-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie X. S., Dunn R. C. Probing single molecule dynamics. Science. 1994 Jul 15;265(5170):361–364. doi: 10.1126/science.265.5170.361. [DOI] [PubMed] [Google Scholar]
- Zenisek D., Steyer J. A., Almers W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature. 2000 Aug 24;406(6798):849–854. doi: 10.1038/35022500. [DOI] [PubMed] [Google Scholar]