Abstract
Valproic acid (VPA) is a short, branched fatty acid with broad-spectrum anticonvulsant activity. It has been suggested that VPA acts directly on the plasma membrane. We calculated the free energy of interaction of VPA with a model lipid bilayer using simulated annealing and the continuum solvent model. Our calculations indicate that VPA is likely to partition into the bilayer both in its neutral and charged forms, as expected from such an amphipathic molecule. The calculations also show that VPA may migrate (flip-flop) across the membrane; according to our (theoretical) study, the most likely flip-flop path at neutral pH involves protonation of VPA pending its insertion into the lipid bilayer and deprotonation upon departure from the other side of the bilayer. Recently, the flip-flop of long fatty acids across lipid bilayers was studied using fluorescence and NMR spectroscopies. However, the measured value of the flip-flop rate appears to depend on the method used in these studies. Our calculated value of the flip-flop rate constant, 20/s, agrees with some of these studies. The limitations of the model and the implications of the study for VPA and other fatty acids are discussed.
Full Text
The Full Text of this article is available as a PDF (357.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adkison K. D., Shen D. D. Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J Pharmacol Exp Ther. 1996 Mar;276(3):1189–1200. [PubMed] [Google Scholar]
- Anel A., Richieri G. V., Kleinfeld A. M. Membrane partition of fatty acids and inhibition of T cell function. Biochemistry. 1993 Jan 19;32(2):530–536. doi: 10.1021/bi00053a018. [DOI] [PubMed] [Google Scholar]
- Ashcroft R. G., Coster H. G., Smith J. R. The molecular organisation of bimolecular lipid membranes. The dielectric structure of the hydrophilic/hydrophobic interface. Biochim Biophys Acta. 1981 Apr 22;643(1):191–204. doi: 10.1016/0005-2736(81)90232-7. [DOI] [PubMed] [Google Scholar]
- Ben-Shaul A., Ben-Tal N., Honig B. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Biophys J. 1996 Jul;71(1):130–137. doi: 10.1016/S0006-3495(96)79208-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Tal N., Ben-Shaul A., Nicholls A., Honig B. Free-energy determinants of alpha-helix insertion into lipid bilayers. Biophys J. 1996 Apr;70(4):1803–1812. doi: 10.1016/S0006-3495(96)79744-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Tal N., Honig B., Bagdassarian C. K., Ben-Shaul A. Association entropy in adsorption processes. Biophys J. 2000 Sep;79(3):1180–1187. doi: 10.1016/S0006-3495(00)76372-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Tal N., Honig B. Helix-helix interactions in lipid bilayers. Biophys J. 1996 Dec;71(6):3046–3050. doi: 10.1016/S0006-3495(96)79498-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Tal N., Honig B., Miller C., McLaughlin S. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J. 1997 Oct;73(4):1717–1727. doi: 10.1016/S0006-3495(97)78203-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Tal N., Honig B., Peitzsch R. M., Denisov G., McLaughlin S. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J. 1996 Aug;71(2):561–575. doi: 10.1016/S0006-3495(96)79280-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Tal N., Sitkoff D., Bransburg-Zabary S., Nachliel E., Gutman M. Theoretical calculations of the permeability of monensin-cation complexes in model bio-membranes. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):221–233. doi: 10.1016/s0005-2736(00)00156-5. [DOI] [PubMed] [Google Scholar]
- Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biggin P. C., Breed J., Son H. S., Sansom M. S. Simulation studies of alamethicin-bilayer interactions. Biophys J. 1997 Feb;72(2 Pt 1):627–636. doi: 10.1016/s0006-3495(97)78701-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buser C. A., Sigal C. T., Resh M. D., McLaughlin S. Membrane binding of myristylated peptides corresponding to the NH2 terminus of Src. Biochemistry. 1994 Nov 8;33(44):13093–13101. doi: 10.1021/bi00248a019. [DOI] [PubMed] [Google Scholar]
- Chong P. L., Fortes P. A., Jameson D. M. Mechanisms of inhibition of (Na,K)-ATPase by hydrostatic pressure studied with fluorescent probes. J Biol Chem. 1985 Nov 25;260(27):14484–14490. [PubMed] [Google Scholar]
- Cortese J. D., McIntyre J. O., Duncan T. M., Fleischer S. Cooperativity in lipid activation of 3-hydroxybutyrate dehydrogenase: role of lecithin as an essential allosteric activator. Biochemistry. 1989 Apr 4;28(7):3000–3008. doi: 10.1021/bi00433a040. [DOI] [PubMed] [Google Scholar]
- Doody M. C., Pownall H. J., Kao Y. J., Smith L. C. Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles. Biochemistry. 1980 Jan 8;19(1):108–116. doi: 10.1021/bi00542a017. [DOI] [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
- Essmann U., Berkowitz M. L. Dynamical properties of phospholipid bilayers from computer simulation. Biophys J. 1999 Apr;76(4):2081–2089. doi: 10.1016/S0006-3495(99)77364-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fattal D. R., Ben-Shaul A. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Biophys J. 1993 Nov;65(5):1795–1809. doi: 10.1016/S0006-3495(93)81249-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franceschetti S., Hamon B., Heinemann U. The action of valproate on spontaneous epileptiform activity in the absence of synaptic transmission and on evoked changes in [Ca2+]o and [K+]o in the hippocampal slice. Brain Res. 1986 Oct 29;386(1-2):1–11. doi: 10.1016/0006-8993(86)90135-6. [DOI] [PubMed] [Google Scholar]
- Frey H. H., Löscher W. Di-n-propylacetic acid--profile of anticonvulsant activity in mice. Arzneimittelforschung. 1976 Feb;26(2):299–301. [PubMed] [Google Scholar]
- Godin Y., Heiner L., Mark J., Mandel P. Effects of DI-n-propylacetate, and anticonvulsive compound, on GABA metabolism. J Neurochem. 1969 Jun;16(3):869–873. doi: 10.1111/j.1471-4159.1969.tb08975.x. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A. Fatty acid transport: difficult or easy? J Lipid Res. 1998 Mar;39(3):467–481. [PubMed] [Google Scholar]
- Hamilton J. A., Kamp F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes. 1999 Dec;48(12):2255–2269. doi: 10.2337/diabetes.48.12.2255. [DOI] [PubMed] [Google Scholar]
- Harvey P. K., Bradford H. F., Davison A. N. The inhibitory effect of sodium n-dipropyl acetate on the degradative enzymes of the GABA shunt. FEBS Lett. 1975 Apr 1;52(2):251–254. doi: 10.1016/0014-5793(75)80817-9. [DOI] [PubMed] [Google Scholar]
- Honig B. H., Hubbell W. L. Stability of "salt bridges" in membrane proteins. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5412–5416. doi: 10.1073/pnas.81.17.5412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
- Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
- Jähnig F. Thermodynamics and kinetics of protein incorporation into membranes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3691–3695. doi: 10.1073/pnas.80.12.3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamp F., Zakim D., Zhang F., Noy N., Hamilton J. A. Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry. 1995 Sep 19;34(37):11928–11937. doi: 10.1021/bi00037a034. [DOI] [PubMed] [Google Scholar]
- Keane P. E., Simiand J., Mendes E., Santucci V., Morre M. The effects of analogues of valproic acid on seizures induced by pentylenetetrazol and GABA content in brain of mice. Neuropharmacology. 1983 Jul;22(7):875–879. doi: 10.1016/0028-3908(83)90134-x. [DOI] [PubMed] [Google Scholar]
- Kessel A., Cafiso D. S., Ben-Tal N. Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects. Biophys J. 2000 Feb;78(2):571–583. doi: 10.1016/S0006-3495(00)76617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessel A., Schulten K., Ben-Tal N. Calculations suggest a pathway for the transverse diffusion of a hydrophobic peptide across a lipid bilayer. Biophys J. 2000 Nov;79(5):2322–2330. doi: 10.1016/S0006-3495(00)76478-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinfeld A. M., Chu P., Romero C. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting. Biochemistry. 1997 Nov 18;36(46):14146–14158. doi: 10.1021/bi971440e. [DOI] [PubMed] [Google Scholar]
- Löscher W. Effect of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA. J Neurochem. 1980 Jun;34(6):1603–1608. doi: 10.1111/j.1471-4159.1980.tb11250.x. [DOI] [PubMed] [Google Scholar]
- Löscher W. Valproate induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol. 1981 Jun 1;30(11):1364–1366. doi: 10.1016/0006-2952(81)90323-3. [DOI] [PubMed] [Google Scholar]
- Löscher W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol. 1999 May;58(1):31–59. doi: 10.1016/s0301-0082(98)00075-6. [DOI] [PubMed] [Google Scholar]
- McLean M. J., Macdonald R. L. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986 Jun;237(3):1001–1011. [PubMed] [Google Scholar]
- Milik M., Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 1993 Jan;15(1):10–25. doi: 10.1002/prot.340150104. [DOI] [PubMed] [Google Scholar]
- Miyazaki J., Hideg K., Marsh D. Interfacial ionization and partitioning of membrane-bound local anesthetics. Biochim Biophys Acta. 1992 Jan 10;1103(1):62–68. doi: 10.1016/0005-2736(92)90057-s. [DOI] [PubMed] [Google Scholar]
- Mosior M., McLaughlin S. Binding of basic peptides to acidic lipids in membranes: effects of inserting alanine(s) between the basic residues. Biochemistry. 1992 Feb 18;31(6):1767–1773. doi: 10.1021/bi00121a026. [DOI] [PubMed] [Google Scholar]
- Newton A. C. Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annu Rev Biophys Biomol Struct. 1993;22:1–25. doi: 10.1146/annurev.bb.22.060193.000245. [DOI] [PubMed] [Google Scholar]
- Peitzsch R. M., McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry. 1993 Oct 5;32(39):10436–10443. doi: 10.1021/bi00090a020. [DOI] [PubMed] [Google Scholar]
- Perlman B. J., Goldstein D. B. Membrane-disordering potency and anticonvulsant action of valproic acid and other short-chain fatty acids. Mol Pharmacol. 1984 Jul;26(1):83–89. [PubMed] [Google Scholar]
- Phillips N. I., Fowler L. J. The effects of sodium valproate on gamma-aminobutyrate metabolism and behaviour in naive and ethanolamine-O-sulphate pretreated rats and mice. Biochem Pharmacol. 1982 Jul 1;31(13):2257–2261. doi: 10.1016/0006-2952(82)90111-3. [DOI] [PubMed] [Google Scholar]
- Ptak M., Egret-Charlier M., Sanson A., Bouloussa O. A NMR study of the ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine vesicles. Biochim Biophys Acta. 1980 Aug 4;600(2):387–397. doi: 10.1016/0005-2736(80)90442-3. [DOI] [PubMed] [Google Scholar]
- Sharp K. A., Nicholls A., Fine R. F., Honig B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science. 1991 Apr 5;252(5002):106–109. doi: 10.1126/science.2011744. [DOI] [PubMed] [Google Scholar]
- Shrake A., Rupley J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol. 1973 Sep 15;79(2):351–371. doi: 10.1016/0022-2836(73)90011-9. [DOI] [PubMed] [Google Scholar]
- Thorgeirsson T. E., Russell C. J., King D. S., Shin Y. K. Direct determination of the membrane affinities of individual amino acids. Biochemistry. 1996 Feb 13;35(6):1803–1809. doi: 10.1021/bi952300c. [DOI] [PubMed] [Google Scholar]
- White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
- Wilson M. A., Pohorille A. Mechanism of unassisted ion transport across membrane bilayers. J Am Chem Soc. 1996 Jul 17;118(28):6580–6587. doi: 10.1021/ja9540381. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]
- Zhang F., Kamp F., Hamilton J. A. Dissociation of long and very long chain fatty acids from phospholipid bilayers. Biochemistry. 1996 Dec 17;35(50):16055–16060. doi: 10.1021/bi961685b. [DOI] [PubMed] [Google Scholar]
- Zheng N., Gierasch L. M. Signal sequences: the same yet different. Cell. 1996 Sep 20;86(6):849–852. doi: 10.1016/s0092-8674(00)80159-2. [DOI] [PubMed] [Google Scholar]