Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2546–2555. doi: 10.1016/S0006-3495(01)76226-1

Dielectric properties of proteins from simulation: the effects of solvent, ligands, pH, and temperature.

J W Pitera 1, M Falta 1, W F van Gunsteren 1
PMCID: PMC1301444  PMID: 11371433

Abstract

We have used a standard Fröhlich-Kirkwood dipole moment fluctuation model to calculate the static dielectric permittivity, epsilon(0), for four different proteins, each of which was simulated under at least two different conditions of pH, temperature, solvation, or ligand binding. For the range of proteins and conditions studied, we calculate values for epsilon(0) between 15 and 40. Our results show, in agreement with prior work, that the behavior of charged residues is the primary determinant of the effective permittivity. Furthermore, only environmental changes that alter the properties of charged residues exert a significant effect on epsilon. In contrast, buried water molecules or ligands have little or no effect on protein dielectric properties.

Full Text

The Full Text of this article is available as a PDF (351.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gilson M. K., Honig B. H. The dielectric constant of a folded protein. Biopolymers. 1986 Nov;25(11):2097–2119. doi: 10.1002/bip.360251106. [DOI] [PubMed] [Google Scholar]
  2. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  3. Kuwajima K. The molten globule state of alpha-lactalbumin. FASEB J. 1996 Jan;10(1):102–109. doi: 10.1096/fasebj.10.1.8566530. [DOI] [PubMed] [Google Scholar]
  4. Nakamura H., Sakamoto T., Wada A. A theoretical study of the dielectric constant of protein. Protein Eng. 1988 Sep;2(3):177–183. doi: 10.1093/protein/2.3.177. [DOI] [PubMed] [Google Scholar]
  5. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  6. Sanner M. F., Olson A. J., Spehner J. C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996 Mar;38(3):305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  7. Smith L. J., Dobson C. M., van Gunsteren W. F. Molecular dynamics simulations of human alpha-lactalbumin: changes to the structural and dynamical properties of the protein at low pH. Proteins. 1999 Jul 1;36(1):77–86. doi: 10.1002/(sici)1097-0134(19990701)36:1<77::aid-prot7>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  8. Stocker U., Spiegel K., van Gunsteren W. F. On the similarity of properties in solution or in the crystalline state: a molecular dynamics study of hen lysozyme. J Biomol NMR. 2000 Sep;18(1):1–12. doi: 10.1023/a:1008379605403. [DOI] [PubMed] [Google Scholar]
  9. Stocker U., van Gunsteren W. F. Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data. Proteins. 2000 Jul 1;40(1):145–153. [PubMed] [Google Scholar]
  10. Svensson B., Jönsson B., Woodward C. Electrostatic contributions to the binding of Ca2+ in calbindin mutants. A Monte Carlo study. Biophys Chem. 1990 Oct;38(1-2):179–183. doi: 10.1016/0301-4622(90)80053-a. [DOI] [PubMed] [Google Scholar]
  11. Voordijk S., Hansson T., Hilvert D., van Gunsteren W. F. Molecular dynamics simulations highlight mobile regions in proteins: A novel suggestion for converting a murine V(H) domain into a more tractable species. J Mol Biol. 2000 Jul 21;300(4):963–973. doi: 10.1006/jmbi.2000.3890. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES