Abstract
A single mutation (Val29-->Gly) at the subunit interface of a Cu, Zn superoxide dismutase dimer leads to a twofold increase in the second order catalytic rate, when compared to the native enzyme, without causing any modification of the structure or the electric field distribution. To check the role of dynamic processes in this catalytic enhancement, the flexibility of the dimeric protein at the subunit interface region has been probed by the phosphorescence and fluorescence properties of the unique tryptophan residue. Multiple spectroscopic data indicate that Trp83 experiences a very similar, and relatively hydrophobic, environment in both wild-type and mutant protein, whereas its mobility is distinctly more restrained in the latter. Molecular dynamics simulation confirms this result, and provides, at the molecular level, details of the dynamic change felt by tryptophan. Moreover, the simulation shows that the loops surrounding the active site are more flexible in the mutant than in the native enzyme, making the copper more accessible to the incoming substrate, and being thus responsible for the catalytic rate enhancement. Evidence for increased, dynamic copper accessibility also comes from faster copper removal in the mutant by a metal chelator. These results indicate that differences in dynamic, rather than structural, features of the two enzymes are responsible for the observed functional change.
Full Text
The Full Text of this article is available as a PDF (947.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Battistoni A., Folcarelli S., Cervoni L., Polizio F., Desideri A., Giartosio A., Rotilio G. Role of the dimeric structure in Cu,Zn superoxide dismutase. pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli. J Biol Chem. 1998 Mar 6;273(10):5655–5661. doi: 10.1074/jbc.273.10.5655. [DOI] [PubMed] [Google Scholar]
- Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bordo D., Matak D., Djinovic-Carugo K., Rosano C., Pesce A., Bolognesi M., Stroppolo M. E., Falconi M., Battistoni A., Desideri A. Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase. J Mol Biol. 1999 Jan 8;285(1):283–296. doi: 10.1006/jmbi.1998.2267. [DOI] [PubMed] [Google Scholar]
- Bourne Y., Redford S. M., Steinman H. M., Lepock J. R., Tainer J. A., Getzoff E. D. Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12774–12779. doi: 10.1073/pnas.93.23.12774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calabrese L., Cocco D., Morpurgo L., Mondovì B., Rotilio G. Cobalt bovine superoxide dismutase. Reactivity of the cobalt chromophore in the copper-containing and in the copper-free enzyme. Eur J Biochem. 1976 May 1;64(2):465–470. doi: 10.1111/j.1432-1033.1976.tb10324.x. [DOI] [PubMed] [Google Scholar]
- Chillemi G., Falconi M., Amadei A., Zimatore G., Desideri A., Di Nola A. The essential dynamics of Cu, Zn superoxide dismutase: suggestion of intersubunit communication. Biophys J. 1997 Aug;73(2):1007–1018. doi: 10.1016/S0006-3495(97)78134-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cioni P., Gabellieri E., Gonnelli M., Strambini G. B. Heterogeneity of protein conformation in solution from the lifetime of tryptophan phosphorescence. Biophys Chem. 1994 Sep;52(1):25–34. doi: 10.1016/0301-4622(94)00039-5. [DOI] [PubMed] [Google Scholar]
- Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
- Crow J. P., Sampson J. B., Zhuang Y., Thompson J. A., Beckman J. S. Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem. 1997 Nov;69(5):1936–1944. doi: 10.1046/j.1471-4159.1997.69051936.x. [DOI] [PubMed] [Google Scholar]
- Desideri A., Falconi M., Polticelli F., Bolognesi M., Djinovic K., Rotilio G. Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active site. Evidence for co-ordinated mutation of charged amino acid residues. J Mol Biol. 1992 Jan 5;223(1):337–342. doi: 10.1016/0022-2836(92)90734-2. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Marcotte E. M., Xenarios I., Yeates T. O. Protein function in the post-genomic era. Nature. 2000 Jun 15;405(6788):823–826. doi: 10.1038/35015694. [DOI] [PubMed] [Google Scholar]
- Falconi M., Gallimbeni R., Paci E. Dimer asymmetry in superoxide dismutase studied by molecular dynamics simulation. J Comput Aided Mol Des. 1996 Oct;10(5):490–498. doi: 10.1007/BF00124478. [DOI] [PubMed] [Google Scholar]
- Folcarelli S., Venerini F., Battistoni A., O'neill P., Rotilio G., Desideri A. Toward the engineering of a super efficient enzyme. Biochem Biophys Res Commun. 1999 Mar 16;256(2):425–428. doi: 10.1006/bbrc.1999.0211. [DOI] [PubMed] [Google Scholar]
- Foti D., Lo Curto B., Cuzzocrea G., Stroppolo M. E., Polizio F., Venanzi M., Desideri A. Spectroscopic characterization of recombinant Cu,Zn superoxide dismutase from Photobacterium leiognathi expressed in Escherichia coli: evidence for a novel catalytic copper binding site. Biochemistry. 1997 Jun 10;36(23):7109–7113. doi: 10.1021/bi963020f. [DOI] [PubMed] [Google Scholar]
- Gabellieri E., Rahuel-Clermont S., Branlant G., Strambini G. B. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochemistry. 1996 Sep 24;35(38):12549–12559. doi: 10.1021/bi960231b. [DOI] [PubMed] [Google Scholar]
- Getzoff E. D., Tainer J. A., Olson A. J. Recognition and interactions controlling the assemblies of beta barrel domains. Biophys J. 1986 Jan;49(1):191–206. doi: 10.1016/S0006-3495(86)83634-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hershberger M. V., Maki A. H., Galley W. C. Phosphorescence and optically detected magnetic resonance studies of a class of anomalous tryptophan residues in globular proteins. Biochemistry. 1980 May 13;19(10):2204–2209. doi: 10.1021/bi00551a032. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Kay L. E. Protein dynamics from NMR. Nat Struct Biol. 1998 Jul;5 (Suppl):513–517. doi: 10.1038/755. [DOI] [PubMed] [Google Scholar]
- Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
- Kohen A., Cannio R., Bartolucci S., Klinman J. P. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature. 1999 Jun 3;399(6735):496–499. doi: 10.1038/20981. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
- Laskowski R. A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995 Oct;13(5):323-30, 307-8. doi: 10.1016/0263-7855(95)00073-9. [DOI] [PubMed] [Google Scholar]
- Malvezzi-Campeggi F., Stroppolo M. E., Mei G., Rosato N., Desideri A. Evidence of stable monomeric species in the unfolding of Cu,Zn superoxide dismutase from Photobacterium leiognathi. Arch Biochem Biophys. 1999 Oct 15;370(2):201–207. doi: 10.1006/abbi.1999.1362. [DOI] [PubMed] [Google Scholar]
- Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974 Sep 16;47(3):469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
- O'Neill P., Davies S., Fielden E. M., Calabrese L., Capo C., Marmocchi F., Natoli G., Rotilio G. The effects of pH and various salts upon the activity of a series of superoxide dismutases. Biochem J. 1988 Apr 1;251(1):41–46. doi: 10.1042/bj2510041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sines J. J., Allison S. A., McCammon J. A. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian dynamics of modified copper/zinc superoxide dismutases. Biochemistry. 1990 Oct 9;29(40):9403–9412. doi: 10.1021/bi00492a014. [DOI] [PubMed] [Google Scholar]
- Smith W., Forester T. R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph. 1996 Jun;14(3):136–141. doi: 10.1016/s0263-7855(96)00043-4. [DOI] [PubMed] [Google Scholar]
- Stroppolo M. E., Pesce A., Falconi M., O'Neill P., Bolognesi M., Desideri A. Single mutation at the intersubunit interface confers extra efficiency to Cu,Zn superoxide dismutase. FEBS Lett. 2000 Oct 13;483(1):17–20. doi: 10.1016/s0014-5793(00)01967-0. [DOI] [PubMed] [Google Scholar]