Abstract
For understanding the gating process of transduction channels in the inner ear it is essential to characterize and examine the functional properties of the ultrastructure of stereociliary bundles. There is strong evidence that transduction channels in hair cells are gated by directly pulling at the so-called tip links. In addition to these tip links a second class of filamentous structures was identified in the scanning and transmission electron microscope: the side-to-side links. These links laterally connect stereocilia of the same row of a hair bundle. This study concentrates on mechanical coupling of stereocilia of the tallest row connected by side-to-side links. Atomic Force microscopy (AFM) was used to investigate hair bundles of outer hair cells (OHCs) from postnatal rats (day 4). Although hair bundles of postnatal rats are still immature at day 4 and interconnecting cross-links do not show preferential direction yet, hair bundles of investigated OHCs already showed the characteristic V-shape of mature hair cells. In a first experiment, the stiffness of stereocilia was investigated scanning individual stereocilia with an AFM tip. The spring constant for the excitatory direction was 2.5 +/- 0.6 x 10(-3) N/m whereas a higher spring constant (3.1 +/- 1.5 x 10(-3) N/m) was observed in the inhibitory direction. In a second set of experiments, the force transmission between stereocilia of the tallest row was measured using AFM in combination with a thin glass fiber. This fiber locally displaced a stereocilium while the force laterally transmitted to the neighboring untouched taller stereocilia was measured by AFM. The results show a weak force interaction between tallest stereocilia of postnatal rats. The force exerted to an individual stereocilium declines to 36% at the nearest adjacent stereocilium of the same row not touched with the fiber. It is suggested that the amount of force transmitted from a taller stereocilium to an adjacent one of the same row depends on the orientation of links. Maximum force transmission is expected to appear along the axis of interconnecting side links. In our studies it is suggested that transmitted forces are small because connecting side links are oriented very close to an angle of 90 degrees with respect of the scan direction (excitatory-inhibitory direction).
Full Text
The Full Text of this article is available as a PDF (211.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
- Crawford A. C., Fettiplace R. The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol. 1985 Jul;364:359–379. doi: 10.1113/jphysiol.1985.sp015750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denk W., Holt J. R., Shepherd G. M., Corey D. P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron. 1995 Dec;15(6):1311–1321. doi: 10.1016/0896-6273(95)90010-1. [DOI] [PubMed] [Google Scholar]
- Furness D. N., Hackney C. M. Cross-links between stereocilia in the guinea pig cochlea. Hear Res. 1985 May;18(2):177–188. doi: 10.1016/0378-5955(85)90010-3. [DOI] [PubMed] [Google Scholar]
- Furness D. N., Richardson G. P., Russell I. J. Stereociliary bundle morphology in organotypic cultures of the mouse cochlea. Hear Res. 1989 Mar;38(1-2):95–109. doi: 10.1016/0378-5955(89)90131-7. [DOI] [PubMed] [Google Scholar]
- Gillespie P. G. Molecular machinery of auditory and vestibular transduction. Curr Opin Neurobiol. 1995 Aug;5(4):449–455. doi: 10.1016/0959-4388(95)80004-2. [DOI] [PubMed] [Google Scholar]
- Géléoc G. S., Lennan G. W., Richardson G. P., Kros C. J. A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc Biol Sci. 1997 Apr 22;264(1381):611–621. doi: 10.1098/rspb.1997.0087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoh J. H., Schoenenberger C. A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci. 1994 May;107(Pt 5):1105–1114. doi: 10.1242/jcs.107.5.1105. [DOI] [PubMed] [Google Scholar]
- Howard J., Ashmore J. F. Stiffness of sensory hair bundles in the sacculus of the frog. Hear Res. 1986;23(1):93–104. doi: 10.1016/0378-5955(86)90178-4. [DOI] [PubMed] [Google Scholar]
- Howard J., Hudspeth A. J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron. 1988 May;1(3):189–199. doi: 10.1016/0896-6273(88)90139-0. [DOI] [PubMed] [Google Scholar]
- Howard J., Hudspeth A. J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc Natl Acad Sci U S A. 1987 May;84(9):3064–3068. doi: 10.1073/pnas.84.9.3064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudspeth A. J., Corey D. P. Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2407–2411. doi: 10.1073/pnas.74.6.2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hörber J. K., Häberle W., Ohnesorge F., Binnig G., Liebich H. G., Czerny C. P., Mahnel H., Mayr A. Investigation of living cells in the nanometer regime with the scanning force microscope. Scanning Microsc. 1992 Dec;6(4):919–930. [PubMed] [Google Scholar]
- Jaramillo F., Hudspeth A. J. Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1330–1334. doi: 10.1073/pnas.90.4.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaramillo F., Hudspeth A. J. Localization of the hair cell's transduction channels at the hair bundle's top by iontophoretic application of a channel blocker. Neuron. 1991 Sep;7(3):409–420. doi: 10.1016/0896-6273(91)90293-9. [DOI] [PubMed] [Google Scholar]
- Kros C. J., Rüsch A., Richardson G. P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci. 1992 Aug 22;249(1325):185–193. doi: 10.1098/rspb.1992.0102. [DOI] [PubMed] [Google Scholar]
- Langer M. G., Koitschev A., Haase H., Rexhausen U., Hörber J. K., Ruppersberg J. P. Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy. Ultramicroscopy. 2000 Feb;82(1-4):269–278. doi: 10.1016/s0304-3991(99)00136-9. [DOI] [PubMed] [Google Scholar]
- Lenoir M., Puel J. L., Pujol R. Stereocilia and tectorial membrane development in the rat cochlea. A SEM study. Anat Embryol (Berl) 1987;175(4):477–487. doi: 10.1007/BF00309683. [DOI] [PubMed] [Google Scholar]
- Lim D. J. Functional structure of the organ of Corti: a review. Hear Res. 1986;22:117–146. doi: 10.1016/0378-5955(86)90089-4. [DOI] [PubMed] [Google Scholar]
- Markin V. S., Hudspeth A. J. Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu Rev Biophys Biomol Struct. 1995;24:59–83. doi: 10.1146/annurev.bb.24.060195.000423. [DOI] [PubMed] [Google Scholar]
- Marquis R. E., Hudspeth A. J. Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gating-spring integrity in hair cells. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11923–11928. doi: 10.1073/pnas.94.22.11923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickles J. O., Comis S. D., Osborne M. P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res. 1984 Aug;15(2):103–112. doi: 10.1016/0378-5955(84)90041-8. [DOI] [PubMed] [Google Scholar]
- Pickles J. O., von Perger M., Rouse G. W., Brix J. The development of links between stereocilia in hair cells of the chick basilar papilla. Hear Res. 1991 Aug;54(2):153–163. doi: 10.1016/0378-5955(91)90116-q. [DOI] [PubMed] [Google Scholar]
- Radmacher M., Fritz M., Kacher C. M., Cleveland J. P., Hansma P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996 Jan;70(1):556–567. doi: 10.1016/S0006-3495(96)79602-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell I. J., Kössl M., Richardson G. P. Nonlinear mechanical responses of mouse cochlear hair bundles. Proc Biol Sci. 1992 Dec 22;250(1329):217–227. doi: 10.1098/rspb.1992.0152. [DOI] [PubMed] [Google Scholar]
- Russell I. J., Richardson G. P. The morphology and physiology of hair cells in organotypic cultures of the mouse cochlea. Hear Res. 1987 Nov;31(1):9–24. doi: 10.1016/0378-5955(87)90210-3. [DOI] [PubMed] [Google Scholar]
- Sobkowicz H. M., Bereman B., Rose J. E. Organotypic development of the organ of Corti in culture. J Neurocytol. 1975 Oct;4(5):543–572. doi: 10.1007/BF01351537. [DOI] [PubMed] [Google Scholar]
- Strelioff D., Flock A. Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea. Hear Res. 1984 Jul;15(1):19–28. doi: 10.1016/0378-5955(84)90221-1. [DOI] [PubMed] [Google Scholar]
- Szymko Y. M., Dimitri P. S., Saunders J. C. Stiffness of hair bundles in the chick cochlea. Hear Res. 1992 May;59(2):241–249. doi: 10.1016/0378-5955(92)90120-c. [DOI] [PubMed] [Google Scholar]
- Tilney L. G., Tilney M. S. Functional organization of the cytoskeleton. Hear Res. 1986;22:55–77. doi: 10.1016/0378-5955(86)90077-8. [DOI] [PubMed] [Google Scholar]
- Zhao Y., Yamoah E. N., Gillespie P. G. Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15469–15474. doi: 10.1073/pnas.93.26.15469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zine A., Romand R. Development of the auditory receptors of the rat: a SEM study. Brain Res. 1996 May 20;721(1-2):49–58. doi: 10.1016/0006-8993(96)00147-3. [DOI] [PubMed] [Google Scholar]