Abstract
The structures of peptide A, and six other 7-20 amino acid peptides corresponding to sequences in the A region (Thr671- Leu690) of the skeletal muscle dihydropyridine receptor II-III loop have been examined, and are correlated with the ability of the peptides to activate or inhibit skeletal ryanodine receptor calcium release channels. The peptides adopted either random coil or nascent helix-like structures, which depended upon the polarity of the terminal residues as well as the presence and ionisation state of two glutamate residues. Enhanced activation of Ca2+ release from sarcoplasmic reticulum, and activation of current flow through single ryanodine receptor channels (at -40 mV), was seen with peptides containing the basic residues 681Arg Lys Arg Arg Lys685, and was strongest when the residues were a part of an alpha-helix. Inhibition of channels (at +40 mV) was also seen with peptides containing the five positively charged residues, but was not enhanced in helical peptides. These results confirm the hypothesis that activation of ryanodine receptor channels by the II-III loop peptides requires both the basic residues and their participation in helical structure, and show for the first time that inhibition requires the basic residues, but is not structure-dependent. These findings imply that activation and inhibition result from peptide binding to separate sites on the ryanodine receptor.
Full Text
The Full Text of this article is available as a PDF (205.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Casarotto M. G., Gibson F., Pace S. M., Curtis S. M., Mulcair M., Dulhunty A. F. A structural requirement for activation of skeletal ryanodine receptors by peptides of the dihydropyridine receptor II-III loop. J Biol Chem. 2000 Apr 21;275(16):11631–11637. doi: 10.1074/jbc.275.16.11631. [DOI] [PubMed] [Google Scholar]
- Dulhunty A. F., Laver D. R., Gallant E. M., Casarotto M. G., Pace S. M., Curtis S. Activation and inhibition of skeletal RyR channels by a part of the skeletal DHPR II-III loop: effects of DHPR Ser687 and FKBP12. Biophys J. 1999 Jul;77(1):189–203. doi: 10.1016/S0006-3495(99)76881-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- El-Hayek R., Ikemoto N. Identification of the minimum essential region in the II-III loop of the dihydropyridine receptor alpha 1 subunit required for activation of skeletal muscle-type excitation-contraction coupling. Biochemistry. 1998 May 12;37(19):7015–7020. doi: 10.1021/bi972907o. [DOI] [PubMed] [Google Scholar]
- Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
- Leong P., MacLennan D. H. A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J Biol Chem. 1998 Apr 3;273(14):7791–7794. doi: 10.1074/jbc.273.14.7791. [DOI] [PubMed] [Google Scholar]
- Lu X., Xu L., Meissner G. Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J Biol Chem. 1994 Mar 4;269(9):6511–6516. [PubMed] [Google Scholar]
- Lu X., Xu L., Meissner G. Phosphorylation of dihydropyridine receptor II-III loop peptide regulates skeletal muscle calcium release channel function. Evidence for an essential role of the beta-OH group of Ser687. J Biol Chem. 1995 Aug 4;270(31):18459–18464. doi: 10.1074/jbc.270.31.18459. [DOI] [PubMed] [Google Scholar]
- Mead F. C., Sullivan D., Williams A. J. Evidence for negative charge in the conduction pathway of the cardiac ryanodine receptor channel provided by the interaction of K+ channel N-type inactivation peptides. J Membr Biol. 1998 Jun 1;163(3):225–234. doi: 10.1007/s002329900386. [DOI] [PubMed] [Google Scholar]
- Nakai J., Tanabe T., Konno T., Adams B., Beam K. G. Localization in the II-III loop of the dihydropyridine receptor of a sequence critical for excitation-contraction coupling. J Biol Chem. 1998 Sep 25;273(39):24983–24986. doi: 10.1074/jbc.273.39.24983. [DOI] [PubMed] [Google Scholar]
- Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
- Proenza C., Wilkens C. M., Beam K. G. Excitation-contraction coupling is not affected by scrambled sequence in residues 681-690 of the dihydropyridine receptor II-III loop. J Biol Chem. 2000 Sep 29;275(39):29935–29937. doi: 10.1074/jbc.C000464200. [DOI] [PubMed] [Google Scholar]
- Tanabe T., Beam K. G., Adams B. A., Niidome T., Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature. 1990 Aug 9;346(6284):567–569. doi: 10.1038/346567a0. [DOI] [PubMed] [Google Scholar]
- Trimble L. A., Bernstein M. A. Application of gradients for water suppression in 2D multiple-quantum-filtered COSY spectra of peptides. J Magn Reson B. 1994 Sep;105(1):67–72. doi: 10.1006/jmrb.1994.1102. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
- Zhu X., Gurrola G., Jiang M. T., Walker J. W., Valdivia H. H. Conversion of an inactive cardiac dihydropyridine receptor II-III loop segment into forms that activate skeletal ryanodine receptors. FEBS Lett. 1999 May 7;450(3):221–226. doi: 10.1016/s0014-5793(99)00496-2. [DOI] [PubMed] [Google Scholar]
- el-Hayek R., Antoniu B., Wang J., Hamilton S. L., Ikemoto N. Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem. 1995 Sep 22;270(38):22116–22118. doi: 10.1074/jbc.270.38.22116. [DOI] [PubMed] [Google Scholar]