Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2727–2741. doi: 10.1016/S0006-3495(01)76241-8

Markovian models of low and high activity levels of cardiac ryanodine receptors.

E Saftenku 1, A J Williams 1, R Sitsapesan 1
PMCID: PMC1301459  PMID: 11371448

Abstract

The modal gating behavior of single sheep cardiac sarcoplasmic reticulum (SR) Ca2+-release/ryanodine receptor (RyR) channels was assessed. We find that the gating of RyR channels spontaneously shifts between high (H) and low (L) levels of activity and inactive periods where no channel openings are detected (I). Moreover, we find that there is evidence for multiple gating modes within H activity, which we term H1 and H2 mode. Our results demonstrate that the underlying mechanisms regulating gating are similar in native and purified channels. Dwell-time distributions of L activity were best fitted by three open and five closed significant exponential components whereas dwell-time distributions of H1 activity were best fitted by two to three open and four closed significant exponential components. Increases in cytosolic [Ca2+] cause an increase in open probability (Po) within L activity and an increase in the probability of occurrence of H activity. Open lifetime distributions within L activity were Ca2+ independent whereas open lifetime distributions within H activity were Ca2+ dependent. This study is the first attempt to estimate RyR single-channel kinetic parameters from sequences of idealized dwell-times and to develop kinetic models of RyR gating using the criterion of maximum likelihood. We propose distinct kinetic schemes for L, H1, and H2 activity that describe the major features of sheep cardiac RyR channel gating at these levels of activity.

Full Text

The Full Text of this article is available as a PDF (245.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armisén R., Sierralta J., Vélez P., Naranjo D., Suárez-Isla B. A. Modal gating in neuronal and skeletal muscle ryanodine-sensitive Ca2+ release channels. Am J Physiol. 1996 Jul;271(1 Pt 1):C144–C153. doi: 10.1152/ajpcell.1996.271.1.C144. [DOI] [PubMed] [Google Scholar]
  2. Ashley R. H., Williams A. J. Divalent cation activation and inhibition of single calcium release channels from sheep cardiac sarcoplasmic reticulum. J Gen Physiol. 1990 May;95(5):981–1005. doi: 10.1085/jgp.95.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng H., Fill M., Valdivia H., Lederer W. J. Models of Ca2+ release channel adaptation. Science. 1995 Mar 31;267(5206):2009–2010. doi: 10.1126/science.7701326. [DOI] [PubMed] [Google Scholar]
  4. Chu A., Fill M., Stefani E., Entman M. L. Cytoplasmic Ca2+ does not inhibit the cardiac muscle sarcoplasmic reticulum ryanodine receptor Ca2+ channel, although Ca(2+)-induced Ca2+ inactivation of Ca2+ release is observed in native vesicles. J Membr Biol. 1993 Jul;135(1):49–59. doi: 10.1007/BF00234651. [DOI] [PubMed] [Google Scholar]
  5. Copello J. A., Barg S., Onoue H., Fleischer S. Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys J. 1997 Jul;73(1):141–156. doi: 10.1016/S0006-3495(97)78055-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibb A. J., Colquhoun D. Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J Physiol. 1992 Oct;456:143–179. doi: 10.1113/jphysiol.1992.sp019331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Györke S. Ca2+ spark termination: inactivation and adaptation may be manifestations of the same mechanism. J Gen Physiol. 1999 Jul;114(1):163–166. doi: 10.1085/jgp.114.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horn R., Lange K. Estimating kinetic constants from single channel data. Biophys J. 1983 Aug;43(2):207–223. doi: 10.1016/S0006-3495(83)84341-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horn R., Vandenberg C. A. Statistical properties of single sodium channels. J Gen Physiol. 1984 Oct;84(4):505–534. doi: 10.1085/jgp.84.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keizer J., Levine L. Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations. Biophys J. 1996 Dec;71(6):3477–3487. doi: 10.1016/S0006-3495(96)79543-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laver D. R., Curtis B. A. Response of ryanodine receptor channels to Ca2+ steps produced by rapid solution exchange. Biophys J. 1996 Aug;71(2):732–741. doi: 10.1016/S0006-3495(96)79272-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laver D. R., Lamb G. D. Inactivation of Ca2+ release channels (ryanodine receptors RyR1 and RyR2) with rapid steps in [Ca2+] and voltage. Biophys J. 1998 May;74(5):2352–2364. doi: 10.1016/S0006-3495(98)77944-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laver D. R., Roden L. D., Ahern G. P., Eager K. R., Junankar P. R., Dulhunty A. F. Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. J Membr Biol. 1995 Sep;147(1):7–22. doi: 10.1007/BF00235394. [DOI] [PubMed] [Google Scholar]
  14. McManus O. B., Blatz A. L., Magleby K. L. Inverse relationship of the durations of adjacent open and shut intervals for C1 and K channels. Nature. 1985 Oct 17;317(6038):625–627. doi: 10.1038/317625a0. [DOI] [PubMed] [Google Scholar]
  15. McManus O. B., Magleby K. L. Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activated K channel. J Gen Physiol. 1989 Dec;94(6):1037–1070. doi: 10.1085/jgp.94.6.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nowycky M. C., Fox A. P., Tsien R. W. Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2178–2182. doi: 10.1073/pnas.82.7.2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Percival A. L., Williams A. J., Kenyon J. L., Grinsell M. M., Airey J. A., Sutko J. L. Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. Biophys J. 1994 Nov;67(5):1834–1850. doi: 10.1016/S0006-3495(94)80665-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Qin F., Auerbach A., Sachs F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J. 1996 Jan;70(1):264–280. doi: 10.1016/S0006-3495(96)79568-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Qin F., Auerbach A., Sachs F. Maximum likelihood estimation of aggregated Markov processes. Proc Biol Sci. 1997 Mar 22;264(1380):375–383. doi: 10.1098/rspb.1997.0054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rousseau E., Meissner G. Single cardiac sarcoplasmic reticulum Ca2+-release channel: activation by caffeine. Am J Physiol. 1989 Feb;256(2 Pt 2):H328–H333. doi: 10.1152/ajpheart.1989.256.2.H328. [DOI] [PubMed] [Google Scholar]
  21. Sachs F., Qin F., Palade P. Models of Ca2+ release channel adaptation. Science. 1995 Mar 31;267(5206):2010–2011. doi: 10.1126/science.7701327. [DOI] [PubMed] [Google Scholar]
  22. Schiefer A., Meissner G., Isenberg G. Ca2+ activation and Ca2+ inactivation of canine reconstituted cardiac sarcoplasmic reticulum Ca(2+)-release channels. J Physiol. 1995 Dec 1;489(Pt 2):337–348. doi: 10.1113/jphysiol.1995.sp021055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sitsapesan R., Montgomery R. A., Williams A. J. New insights into the gating mechanisms of cardiac ryanodine receptors revealed by rapid changes in ligand concentration. Circ Res. 1995 Oct;77(4):765–772. doi: 10.1161/01.res.77.4.765. [DOI] [PubMed] [Google Scholar]
  24. Sitsapesan R., Williams A. J. Gating of the native and purified cardiac SR Ca(2+)-release channel with monovalent cations as permeant species. Biophys J. 1994 Oct;67(4):1484–1494. doi: 10.1016/S0006-3495(94)80622-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sitsapesan R., Williams A. J. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by luminal Ca2+. J Membr Biol. 1994 Feb;137(3):215–226. doi: 10.1007/BF00232590. [DOI] [PubMed] [Google Scholar]
  26. Stern M. D., Song L. S., Cheng H., Sham J. S., Yang H. T., Boheler K. R., Ríos E. Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol. 1999 Mar;113(3):469–489. doi: 10.1085/jgp.113.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tang Y., Othmer H. G. A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys J. 1994 Dec;67(6):2223–2235. doi: 10.1016/S0006-3495(94)80707-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zahradníková A., Zahradník I. A minimal gating model for the cardiac calcium release channel. Biophys J. 1996 Dec;71(6):2996–3012. doi: 10.1016/S0006-3495(96)79492-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zahradníková A., Zahradník I. Description of modal gating of the cardiac calcium release channel in planar lipid membranes. Biophys J. 1995 Nov;69(5):1780–1788. doi: 10.1016/S0006-3495(95)80048-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zahradníková A., Zahradník I., Györke I., Györke S. Rapid activation of the cardiac ryanodine receptor by submillisecond calcium stimuli. J Gen Physiol. 1999 Dec;114(6):787–798. doi: 10.1085/jgp.114.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES