Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2742–2750. doi: 10.1016/S0006-3495(01)76242-X

Ion concentration-dependence of rat cardiac unitary L-type calcium channel conductance.

A Guia 1, M D Stern 1, E G Lakatta 1, I R Josephson 1
PMCID: PMC1301460  PMID: 11371449

Abstract

Little is known about the native properties of unitary cardiac L-type calcium currents (i(Ca)) measured with physiological calcium (Ca) ion concentration, and their role in excitation-contraction (E-C) coupling. Our goal was to chart the concentration-dependence of unitary conductance (gamma) to physiological Ca concentration and compare it to barium ion (Ba) conductance in the absence of agonists. In isolated, K-depolarized rat myocytes, i(Ca) amplitudes were measured using cell-attached patches with 2 to 70 mM Ca or 2 to 105 mM Ba in the pipette. At 0 mV, 2 mM of Ca produced 0.12 pA, and 2 mM of Ba produced 0.19 pA unitary currents. Unitary conductance was described by a Langmuir isotherm relationship with a maximum gammaCa of 5.3 +/- 0.2 pS (n = 15), and gammaBa of 15 +/- 1 pS (n = 27). The concentration producing half-maximal gamma, Kd(gamma), was not different between Ca (1.7 +/- 0.3 mM) and Ba (1.9 +/- 0.4 mM). We found that quasi-physiological concentrations of Ca produced currents that were as easily resolvable as those obtained with the traditionally used higher concentrations. This study leads to future work on the molecular basis of E-C coupling with a physiological concentration of Ca ions permeating the Ca channel.

Full Text

The Full Text of this article is available as a PDF (121.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balke C. W., Rose W. C., Marban E., Wier W. G. Macroscopic and unitary properties of physiological ion flux through T-type Ca2+ channels in guinea-pig heart cells. J Physiol. 1992 Oct;456:247–265. doi: 10.1113/jphysiol.1992.sp019335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bezanilla F., Armstrong C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol. 1972 Nov;60(5):588–608. doi: 10.1085/jgp.60.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caffrey J. M., Josephson I. R., Brown A. M. Calcium channels of amphibian stomach and mammalian aorta smooth muscle cells. Biophys J. 1986 Jun;49(6):1237–1242. doi: 10.1016/S0006-3495(86)83753-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cavalié A., Ochi R., Pelzer D., Trautwein W. Elementary currents through Ca2+ channels in guinea pig myocytes. Pflugers Arch. 1983 Sep;398(4):284–297. doi: 10.1007/BF00657238. [DOI] [PubMed] [Google Scholar]
  5. Chen L., El-Sherif N., Boutjdir M. Unitary current analysis of L-type Ca2+ channels in human fetal ventricular myocytes. J Cardiovasc Electrophysiol. 1999 May;10(5):692–700. doi: 10.1111/j.1540-8167.1999.tb00246.x. [DOI] [PubMed] [Google Scholar]
  6. Chen L., el-Sherif N., Boutjdir M. Alpha 1-adrenergic activation inhibits beta-adrenergic-stimulated unitary Ca2+ currents in cardiac ventricular myocytes. Circ Res. 1996 Aug;79(2):184–193. doi: 10.1161/01.res.79.2.184. [DOI] [PubMed] [Google Scholar]
  7. Church P. J., Stanley E. F. Single L-type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. J Physiol. 1996 Oct 1;496(Pt 1):59–68. doi: 10.1113/jphysiol.1996.sp021665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cloues R. K., Sather W. A. Permeant ion binding affinity in subconductance states of an L-type Ca2+ channel expressed in Xenopus laevis oocytes. J Physiol. 2000 Apr 1;524(Pt 1):19–36. doi: 10.1111/j.1469-7793.2000.00019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fan J. S., Yuan Y., Palade P. Kinetic effects of FPL 64176 on L-type Ca2+ channels in cardiac myocytes. Naunyn Schmiedebergs Arch Pharmacol. 2000 May;361(5):465–476. doi: 10.1007/s002100000219. [DOI] [PubMed] [Google Scholar]
  10. Gondo N., Ono K., Mannen K., Yatani A., Green S. A., Arita M. Four conductance levels of cloned cardiac L-type Ca2+ channel alpha1 and alpha1/beta subunits. FEBS Lett. 1998 Feb 13;423(1):86–92. doi: 10.1016/s0014-5793(98)00070-2. [DOI] [PubMed] [Google Scholar]
  11. Guia A., Wan X., Courtemanche M., Leblanc N. Local Ca2+ entry through L-type Ca2+ channels activates Ca2+-dependent K+ channels in rabbit coronary myocytes. Circ Res. 1999 May 14;84(9):1032–1042. doi: 10.1161/01.res.84.9.1032. [DOI] [PubMed] [Google Scholar]
  12. Handrock R., Schröder F., Hirt S., Haverich A., Mittmann C., Herzig S. Single-channel properties of L-type calcium channels from failing human ventricle. Cardiovasc Res. 1998 Feb;37(2):445–455. doi: 10.1016/s0008-6363(97)00257-5. [DOI] [PubMed] [Google Scholar]
  13. Hess P., Lansman J. B., Tsien R. W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol. 1986 Sep;88(3):293–319. doi: 10.1085/jgp.88.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kokubun S., Reuter H. Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4824–4827. doi: 10.1073/pnas.81.15.4824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kunze D. L., Ritchie A. K. Multiple conductance levels of the dihydropyridine-sensitive calcium channel in GH3 cells. J Membr Biol. 1990 Nov;118(2):171–178. doi: 10.1007/BF01868474. [DOI] [PubMed] [Google Scholar]
  16. Mazzanti M., DeFelice L. J. Ca channel gating during cardiac action potentials. Biophys J. 1990 Oct;58(4):1059–1065. doi: 10.1016/S0006-3495(90)82448-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mazzanti M., DeFelice L. J., Liu Y. M. Gating of L-type Ca2+ channels in embryonic chick ventricle cells: dependence on voltage, current and channel density. J Physiol. 1991 Nov;443:307–334. doi: 10.1113/jphysiol.1991.sp018835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCleskey E. W., Almers W. The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7149–7153. doi: 10.1073/pnas.82.20.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McDonald T. F., Cavalié A., Trautwein W., Pelzer D. Voltage-dependent properties of macroscopic and elementary calcium channel currents in guinea pig ventricular myocytes. Pflugers Arch. 1986 May;406(5):437–448. doi: 10.1007/BF00583365. [DOI] [PubMed] [Google Scholar]
  20. McDonald T. F., Pelzer S., Trautwein W., Pelzer D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994 Apr;74(2):365–507. doi: 10.1152/physrev.1994.74.2.365. [DOI] [PubMed] [Google Scholar]
  21. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  22. Ohya Y., Sperelakis N. Modulation of single slow (L-type) calcium channels by intracellular ATP in vascular smooth muscle cells. Pflugers Arch. 1989 Jul;414(3):257–264. doi: 10.1007/BF00584624. [DOI] [PubMed] [Google Scholar]
  23. Ono K., Fozzard H. A. Phosphorylation restores activity of L-type calcium channels after rundown in inside-out patches from rabbit cardiac cells. J Physiol. 1992 Aug;454:673–688. doi: 10.1113/jphysiol.1992.sp019286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reuter H., Porzig H., Kokubun S., Prod'hom B. Calcium channels in the heart. Properties and modulation by dihydropyridine enantiomers. Ann N Y Acad Sci. 1988;522:16–24. doi: 10.1111/j.1749-6632.1988.tb33338.x. [DOI] [PubMed] [Google Scholar]
  25. Reuter H., Stevens C. F., Tsien R. W., Yellen G. Properties of single calcium channels in cardiac cell culture. Nature. 1982 Jun 10;297(5866):501–504. doi: 10.1038/297501a0. [DOI] [PubMed] [Google Scholar]
  26. Romanin C., Grösswagen P., Schindler H. Calpastatin and nucleotides stabilize cardiac calcium channel activity in excised patches. Pflugers Arch. 1991 Mar;418(1-2):86–92. doi: 10.1007/BF00370456. [DOI] [PubMed] [Google Scholar]
  27. Rose W. C., Balke C. W., Wier W. G., Marban E. Macroscopic and unitary properties of physiological ion flux through L-type Ca2+ channels in guinea-pig heart cells. J Physiol. 1992 Oct;456:267–284. doi: 10.1113/jphysiol.1992.sp019336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rubart M., Patlak J. B., Nelson M. T. Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations. J Gen Physiol. 1996 Apr;107(4):459–472. doi: 10.1085/jgp.107.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schröder F., Herzig S. Effects of beta2-adrenergic stimulation on single-channel gating of rat cardiac L-type Ca2+ channels. Am J Physiol. 1999 Mar;276(3 Pt 2):H834–H843. doi: 10.1152/ajpheart.1999.276.3.H834. [DOI] [PubMed] [Google Scholar]
  30. Shorofsky S. R., January C. T. L- and T-type Ca2+ channels in canine cardiac Purkinje cells. Single-channel demonstration of L-type Ca2+ window current. Circ Res. 1992 Mar;70(3):456–464. doi: 10.1161/01.res.70.3.456. [DOI] [PubMed] [Google Scholar]
  31. Smith P. A., Aschroft F. M., Fewtrell C. M. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells. J Gen Physiol. 1993 May;101(5):767–797. doi: 10.1085/jgp.101.5.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Talvenheimo J. A., Worley J. F., 3rd, Nelson M. T. Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation. Biophys J. 1987 Nov;52(5):891–899. doi: 10.1016/S0006-3495(87)83283-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tohse N., Mészáros J., Sperelakis N. Developmental changes in long-opening behavior of L-type Ca2+ channels in embryonic chick heart cells. Circ Res. 1992 Aug;71(2):376–384. doi: 10.1161/01.res.71.2.376. [DOI] [PubMed] [Google Scholar]
  34. Yue D. T., Marban E. Permeation in the dihydropyridine-sensitive calcium channel. Multi-ion occupancy but no anomalous mole-fraction effect between Ba2+ and Ca2+. J Gen Physiol. 1990 May;95(5):911–939. doi: 10.1085/jgp.95.5.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhang S., Hiraoka M., Hirano Y. Effects of alpha1-adrenergic stimulation on L-type Ca2+ current in rat ventricular myocytes. J Mol Cell Cardiol. 1998 Oct;30(10):1955–1965. doi: 10.1006/jmcc.1998.0758. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES