Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2751–2760. doi: 10.1016/S0006-3495(01)76243-1

Hydration and protein folding in water and in reverse micelles: compressibility and volume changes.

D Valdez 1, J Y Le Huérou 1, M Gindre 1, W Urbach 1, M Waks 1
PMCID: PMC1301461  PMID: 11371450

Abstract

The partial specific volume and adiabatic compressibility of proteins reflect the hydration properties of the solvent-exposed protein surface, as well as changes in conformational states. Reverse micelles, or water-in-oil microemulsions, are protein-sized, optically-clear microassemblies in which hydration can be experimentally controlled. We explore, by densimetry and ultrasound velocimetry, three basic proteins: cytochrome c, lysozyme, and myelin basic protein in reverse micelles made of sodium bis (2-ethylhexyl) sulfosuccinate, water, and isooctane and in aqueous solvents. For comparison, we use beta-lactoglobulin (pI = 5.1) as a reference protein. We examine the partial specific volume and adiabatic compressibility of the proteins at increasing levels of micellar hydration. For the lowest water content compatible with complete solubilization, all proteins display their highest compressibility values, independent of their amino acid sequence and charge. These values lie within the range of empirical intrinsic protein compressibility estimates. In addition, we obtain volumetric data for the transition of myelin basic protein from its initially unfolded state in water free of denaturants, to a folded, compact conformation within the water-controlled microenvironment of reverse micelles. These results disclose yet another aspect of the protein structural properties observed in membrane-mimetic molecular assemblies.

Full Text

The Full Text of this article is available as a PDF (92.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguzzi A. Protein conformation dictates prion strain. Nat Med. 1998 Oct;4(10):1125–1126. doi: 10.1038/2621. [DOI] [PubMed] [Google Scholar]
  2. Amararene A, Gindre M, Le Huerou J, Urbach W, Valdez D, Waks M. Adiabatic compressibility of AOT. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):682–689. doi: 10.1103/physreve.61.682. [DOI] [PubMed] [Google Scholar]
  3. Brownlow S., Morais Cabral J. H., Cooper R., Flower D. R., Yewdall S. J., Polikarpov I., North A. C., Sawyer L. Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin. Structure. 1997 Apr 15;5(4):481–495. doi: 10.1016/s0969-2126(97)00205-0. [DOI] [PubMed] [Google Scholar]
  4. Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
  5. Bychkova V. E., Dujsekina A. E., Klenin S. I., Tiktopulo E. I., Uversky V. N., Ptitsyn O. B. Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry. 1996 May 14;35(19):6058–6063. doi: 10.1021/bi9522460. [DOI] [PubMed] [Google Scholar]
  6. Chalikian T. V., Bresiauer K. J. On volume changes accompanying conformational transitions of biopolymers. Biopolymers. 1996 Nov;39(5):619–626. doi: 10.1002/(sici)1097-0282(199611)39:5<619::aid-bip1>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  7. Chalikian T. V., Gindikin V. S., Breslauer K. J. Volumetric characterizations of the native, molten globule and unfolded states of cytochrome c at acidic pH. J Mol Biol. 1995 Jul 7;250(2):291–306. doi: 10.1006/jmbi.1995.0377. [DOI] [PubMed] [Google Scholar]
  8. Chalikian T. V., Totrov M., Abagyan R., Breslauer K. J. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J Mol Biol. 1996 Jul 26;260(4):588–603. doi: 10.1006/jmbi.1996.0423. [DOI] [PubMed] [Google Scholar]
  9. Cohen F. E. Protein misfolding and prion diseases. J Mol Biol. 1999 Oct 22;293(2):313–320. doi: 10.1006/jmbi.1999.2990. [DOI] [PubMed] [Google Scholar]
  10. Cortese J. D., Voglino A. L., Hackenbrock C. R. Multiple conformations of physiological membrane-bound cytochrome c. Biochemistry. 1998 May 5;37(18):6402–6409. doi: 10.1021/bi9730543. [DOI] [PubMed] [Google Scholar]
  11. Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
  12. Durelli L., Bongioanni M. R., Ferrero B., Oggero A., Marzano A., Rizzetto M. Interferon treatment for multiple sclerosis: autoimmune complications may be lethal. Neurology. 1998 Feb;50(2):570–571. doi: 10.1212/wnl.50.2.570. [DOI] [PubMed] [Google Scholar]
  13. Foygel K., Spector S., Chatterjee S., Kahn P. C. Volume changes of the molten globule transitions of horse heart ferricytochrome c: a thermodynamic cycle. Protein Sci. 1995 Jul;4(7):1426–1429. doi: 10.1002/pro.5560040717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gavish B., Gratton E., Hardy C. J. Adiabatic compressibility of globular proteins. Proc Natl Acad Sci U S A. 1983 Feb;80(3):750–754. doi: 10.1073/pnas.80.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gekko K., Hasegawa Y. Compressibility-structure relationship of globular proteins. Biochemistry. 1986 Oct 21;25(21):6563–6571. doi: 10.1021/bi00369a034. [DOI] [PubMed] [Google Scholar]
  16. Grandi C., Smith R. E., Luisi P. L. Micellar solubilization of biopolymers in organic solvents. Activity and conformation of lysozyme in isooctane reverse micelles. J Biol Chem. 1981 Jan 25;256(2):837–843. [PubMed] [Google Scholar]
  17. Harbury P. B., Plecs J. J., Tidor B., Alber T., Kim P. S. High-resolution protein design with backbone freedom. Science. 1998 Nov 20;282(5393):1462–1467. doi: 10.1126/science.282.5393.1462. [DOI] [PubMed] [Google Scholar]
  18. Kharakoz D. P. Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure. Biochemistry. 1997 Aug 19;36(33):10276–10285. doi: 10.1021/bi961781c. [DOI] [PubMed] [Google Scholar]
  19. Kharakoz D. P., Sarvazyan A. P. Hydrational and intrinsic compressibilities of globular proteins. Biopolymers. 1993 Jan;33(1):11–26. doi: 10.1002/bip.360330103. [DOI] [PubMed] [Google Scholar]
  20. Klapper M. H. On the nature of the protein interior. Biochim Biophys Acta. 1971 Mar 23;229(3):557–566. doi: 10.1016/0005-2795(71)90271-6. [DOI] [PubMed] [Google Scholar]
  21. Kuwata K., Hoshino M., Forge V., Era S., Batt C. A., Goto Y. Solution structure and dynamics of bovine beta-lactoglobulin A. Protein Sci. 1999 Nov;8(11):2541–2545. doi: 10.1110/ps.8.11.2541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee J. C., Timasheff S. N. Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry. 1974 Jan 15;13(2):257–265. doi: 10.1021/bi00699a005. [DOI] [PubMed] [Google Scholar]
  23. Liebes L. F., Zand R., Phillips W. D. Solution behavior, circular dichroism and 22 HMz PMR studies of the bovine myelin basic protein. Biochim Biophys Acta. 1975 Sep 9;405(1):27–39. doi: 10.1016/0005-2795(75)90311-6. [DOI] [PubMed] [Google Scholar]
  24. Luisi P. L., Magid L. J. Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. CRC Crit Rev Biochem. 1986;20(4):409–474. doi: 10.3109/10409238609081999. [DOI] [PubMed] [Google Scholar]
  25. Martenson R. E. Possible hydrophobic region in myelin basic protein consisting of an orthogonally packed beta-sheet. J Neurochem. 1986 May;46(5):1612–1622. doi: 10.1111/j.1471-4159.1986.tb01784.x. [DOI] [PubMed] [Google Scholar]
  26. Martenson R. E. The use of gel filtration to follow conformational changes in proteins. Conformational flexibility of bovine myelin basic protein. J Biol Chem. 1978 Dec 25;253(24):8887–8893. [PubMed] [Google Scholar]
  27. Minton A. P. Confinement as a determinant of macromolecular structure and reactivity. Biophys J. 1992 Oct;63(4):1090–1100. doi: 10.1016/S0006-3495(92)81663-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nicot C., Vacher M., Denoroy L., Kahn P. C., Waks M. Limited proteolysis of myelin basic protein in a system mimetic of the myelin interlamellar aqueous space. J Neurochem. 1993 Apr;60(4):1283–1291. doi: 10.1111/j.1471-4159.1993.tb03288.x. [DOI] [PubMed] [Google Scholar]
  29. Nicot C., Vacher M., Vincent M., Gallay J., Waks M. Membrane proteins in reverse micelles: myelin basic protein in a membrane-mimetic environment. Biochemistry. 1985 Nov 19;24(24):7024–7032. doi: 10.1021/bi00345a041. [DOI] [PubMed] [Google Scholar]
  30. Nicot C., Waks M. Proteins as invited guests of reverse micelles: conformational effects, significance, applications. Biotechnol Genet Eng Rev. 1996;13:267–314. doi: 10.1080/02648725.1996.10647932. [DOI] [PubMed] [Google Scholar]
  31. Oldfield C. Enzymes in water-in-oil microemulsions ('reversed micelles'): principles and applications. Biotechnol Genet Eng Rev. 1994;12:255–327. doi: 10.1080/02648725.1994.10647914. [DOI] [PubMed] [Google Scholar]
  32. Pinheiro T. J., Elöve G. A., Watts A., Roder H. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles. Biochemistry. 1997 Oct 21;36(42):13122–13132. doi: 10.1021/bi971235z. [DOI] [PubMed] [Google Scholar]
  33. Pinheiro T. J., Watts A. Lipid specificity in the interaction of cytochrome c with anionic phospholipid bilayers revealed by solid-state 31P NMR. Biochemistry. 1994 Mar 8;33(9):2451–2458. doi: 10.1021/bi00175a013. [DOI] [PubMed] [Google Scholar]
  34. Priev A., Almagor A., Yedgar S., Gavish B. Glycerol decreases the volume and compressibility of protein interior. Biochemistry. 1996 Feb 20;35(7):2061–2066. doi: 10.1021/bi951842r. [DOI] [PubMed] [Google Scholar]
  35. Rashin A. A., Iofin M., Honig B. Internal cavities and buried waters in globular proteins. Biochemistry. 1986 Jun 17;25(12):3619–3625. doi: 10.1021/bi00360a021. [DOI] [PubMed] [Google Scholar]
  36. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  37. Richards F. M., Lim W. A. An analysis of packing in the protein folding problem. Q Rev Biophys. 1993 Nov;26(4):423–498. doi: 10.1017/s0033583500002845. [DOI] [PubMed] [Google Scholar]
  38. Sarvazyan A. P. Ultrasonic velocimetry of biological compounds. Annu Rev Biophys Biophys Chem. 1991;20:321–342. doi: 10.1146/annurev.bb.20.060191.001541. [DOI] [PubMed] [Google Scholar]
  39. Sasahara K., Sakurai M., Nitta K. The volume and compressibility changes of lysozyme associated with guanidinium chloride and pressure-assisted unfolding. J Mol Biol. 1999 Aug 20;291(3):693–701. doi: 10.1006/jmbi.1999.2982. [DOI] [PubMed] [Google Scholar]
  40. Takano K., Funahashi J., Yamagata Y., Fujii S., Yutani K. Contribution of water molecules in the interior of a protein to the conformational stability. J Mol Biol. 1997 Nov 21;274(1):132–142. doi: 10.1006/jmbi.1997.1365. [DOI] [PubMed] [Google Scholar]
  41. Tamura Y., Gekko K. Compactness of thermally and chemically denatured ribonuclease A as revealed by volume and compressibility. Biochemistry. 1995 Feb 14;34(6):1878–1884. doi: 10.1021/bi00006a008. [DOI] [PubMed] [Google Scholar]
  42. Vidugiris G. J., Royer C. A. Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states. Biophys J. 1998 Jul;75(1):463–470. doi: 10.1016/S0006-3495(98)77534-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Waks M., Beychok S. Induced conformational states in human apohemoglobin on binding of haptoglobin 1--1. Effect of added heme as a probe of frozen structures. Biochemistry. 1974 Jan 1;13(1):15–22. doi: 10.1021/bi00698a003. [DOI] [PubMed] [Google Scholar]
  44. Waks M. Proteins and peptides in water-restricted environments. Proteins. 1986 Sep;1(1):4–15. doi: 10.1002/prot.340010104. [DOI] [PubMed] [Google Scholar]
  45. Ye L, Weitz DA, Sheng P, Huang JS. Sound propagation in sodium di-2-ethyl-hexylsulfosuccinate micelles and microemulsions. Phys Rev A. 1991 Dec 15;44(12):8249–8263. doi: 10.1103/physreva.44.8249. [DOI] [PubMed] [Google Scholar]
  46. de Jongh H. H., Ritsema T., Killian J. A. Lipid specificity for membrane mediated partial unfolding of cytochrome c. FEBS Lett. 1995 Mar 6;360(3):255–260. doi: 10.1016/0014-5793(95)00115-p. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES