Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2789–2797. doi: 10.1016/S0006-3495(01)76246-7

Tilt, twist, and coiling in beta-barrel membrane proteins: relation to infrared dichroism.

T Páli 1, D Marsh 1
PMCID: PMC1301464  PMID: 11371453

Abstract

The x-ray coordinates of beta-barrel transmembrane proteins from the porins superfamily and relatives are used to calculate the mean tilt of the beta-strands and their mean local twist and coiling angles. The 13 proteins examined correspond to beta-barrels with 8 to 22 strands, and shear numbers ranging from 8 to 24. The results are compared with predictions from the model of Murzin, Lesk, and Chothia for symmetrical regular barrels. Good agreement is found for the mean strand tilt, but the twist angles are smaller than those for open beta-sheets and beta-barrels with shorter strands. The model is reparameterised to account for the reduced twist characteristic of long-stranded transmembrane beta-barrels. This produces predictions of both twist and coiling angles that are in agreement with the mean values obtained from the x-ray structures. With the optimized parameters, the model can then be used to determine twist and coiling angles of transmembrane beta-barrels from measurements of the amide band infrared dichroism in oriented membranes. Satisfactory agreement is obtained for OmpF. The strand tilt obtained from the x-ray coordinates, or from the reparameterised model, can be combined with infrared dichroism measurements to obtain information on the orientation of the beta-barrel assembly in the membrane.

Full Text

The Full Text of this article is available as a PDF (177.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Dover S. D., Elliott A. Structure of beta-poly-L-alanine: refined atomic co-ordinates for an anti-parallel beta-pleated sheet. J Mol Biol. 1967 Nov 28;30(1):201–208. doi: 10.1016/0022-2836(67)90252-5. [DOI] [PubMed] [Google Scholar]
  2. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  3. Buchanan S. K., Smith B. S., Venkatramani L., Xia D., Esser L., Palnitkar M., Chakraborty R., van der Helm D., Deisenhofer J. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol. 1999 Jan;6(1):56–63. doi: 10.1038/4931. [DOI] [PubMed] [Google Scholar]
  4. Chothia C., Janin J. Relative orientation of close-packed beta-pleated sheets in proteins. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4146–4150. doi: 10.1073/pnas.78.7.4146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chou K. C., Carlacci L., Maggiora G. M., Maggiora G. G. Conformational and geometrical properties of idealized beta-barrels in proteins. J Mol Biol. 1990 May 20;213(2):315–326. doi: 10.1016/s0022-2836(05)80193-7. [DOI] [PubMed] [Google Scholar]
  6. Clark N. A., Rothschild K. J., Luippold D. A., Simon B. A. Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J. 1980 Jul;31(1):65–96. doi: 10.1016/S0006-3495(80)85041-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  8. Dutzler R., Rummel G., Albertí S., Hernández-Allés S., Phale P., Rosenbusch J., Benedí V., Schirmer T. Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure. 1999 Apr 15;7(4):425–434. doi: 10.1016/s0969-2126(99)80055-0. [DOI] [PubMed] [Google Scholar]
  9. Dutzler R., Wang Y. F., Rizkallah P., Rosenbusch J. P., Schirmer T. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 1996 Feb 15;4(2):127–134. doi: 10.1016/s0969-2126(96)00016-0. [DOI] [PubMed] [Google Scholar]
  10. Ferguson A. D., Hofmann E., Coulton J. W., Diederichs K., Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science. 1998 Dec 18;282(5397):2215–2220. doi: 10.1126/science.282.5397.2215. [DOI] [PubMed] [Google Scholar]
  11. Forst D., Welte W., Wacker T., Diederichs K. Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Biol. 1998 Jan;5(1):37–46. doi: 10.1038/nsb0198-37. [DOI] [PubMed] [Google Scholar]
  12. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  13. Janin J., Chothia C. Packing of alpha-helices onto beta-pleated sheets and the anatomy of alpha/beta proteins. J Mol Biol. 1980 Oct 15;143(1):95–128. doi: 10.1016/0022-2836(80)90126-6. [DOI] [PubMed] [Google Scholar]
  14. Kreusch A., Neubüser A., Schiltz E., Weckesser J., Schulz G. E. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 A resolution. Protein Sci. 1994 Jan;3(1):58–63. doi: 10.1002/pro.5560030108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Locher K. P., Rees B., Koebnik R., Mitschler A., Moulinier L., Rosenbusch J. P., Moras D. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell. 1998 Dec 11;95(6):771–778. doi: 10.1016/s0092-8674(00)81700-6. [DOI] [PubMed] [Google Scholar]
  16. Marsh D. Dichroic ratios in polarized Fourier transform infrared for nonaxial symmetry of beta-sheet structures. Biophys J. 1997 Jun;72(6):2710–2718. doi: 10.1016/S0006-3495(97)78914-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marsh D. Infrared dichroism of twisted beta-sheet barrels. The structure of E. coli outer membrane proteins. J Mol Biol. 2000 Mar 31;297(3):803–808. doi: 10.1006/jmbi.2000.3557. [DOI] [PubMed] [Google Scholar]
  18. Marsh D. Nonaxiality in infrared dichroic ratios of polytopic transmembrane proteins. Biophys J. 1998 Jul;75(1):354–358. doi: 10.1016/S0006-3495(98)77519-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marsh D. Spin-label electron spin resonance and Fourier transform infrared spectroscopy for structural/dynamic measurements on ion channels. Methods Enzymol. 1999;294:59–92. doi: 10.1016/s0076-6879(99)94007-7. [DOI] [PubMed] [Google Scholar]
  20. McLachlan A. D. Gene duplications in the structural evolution of chymotrypsin. J Mol Biol. 1979 Feb 15;128(1):49–79. doi: 10.1016/0022-2836(79)90308-5. [DOI] [PubMed] [Google Scholar]
  21. Meyer J. E., Hofnung M., Schulz G. E. Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. J Mol Biol. 1997 Mar 7;266(4):761–775. doi: 10.1006/jmbi.1996.0823. [DOI] [PubMed] [Google Scholar]
  22. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  23. Murzin A. G., Lesk A. M., Chothia C. Principles determining the structure of beta-sheet barrels in proteins. I. A theoretical analysis. J Mol Biol. 1994 Mar 11;236(5):1369–1381. doi: 10.1016/0022-2836(94)90064-7. [DOI] [PubMed] [Google Scholar]
  24. Murzin A. G., Lesk A. M., Chothia C. Principles determining the structure of beta-sheet barrels in proteins. II. The observed structures. J Mol Biol. 1994 Mar 11;236(5):1382–1400. doi: 10.1016/0022-2836(94)90065-5. [DOI] [PubMed] [Google Scholar]
  25. Nabedryk E., Garavito R. M., Breton J. The orientation of beta-sheets in porin. A polarized Fourier transform infrared spectroscopic investigation. Biophys J. 1988 May;53(5):671–676. doi: 10.1016/S0006-3495(88)83148-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pautsch A., Schulz G. E. High-resolution structure of the OmpA membrane domain. J Mol Biol. 2000 Apr 28;298(2):273–282. doi: 10.1006/jmbi.2000.3671. [DOI] [PubMed] [Google Scholar]
  27. Rodionova N. A., Tatulian S. A., Surrey T., Jähnig F., Tamm L. K. Characterization of two membrane-bound forms of OmpA. Biochemistry. 1995 Feb 14;34(6):1921–1929. doi: 10.1021/bi00006a013. [DOI] [PubMed] [Google Scholar]
  28. Rothschild K. J., Clark N. A. Polarized infrared spectroscopy of oriented purple membrane. Biophys J. 1979 Mar;25(3):473–487. doi: 10.1016/S0006-3495(79)85317-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
  30. Snijder H. J., Ubarretxena-Belandia I., Blaauw M., Kalk K. H., Verheij H. M., Egmond M. R., Dekker N., Dijkstra B. W. Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature. 1999 Oct 14;401(6754):717–721. doi: 10.1038/44890. [DOI] [PubMed] [Google Scholar]
  31. Tamm L. K., Tatulian S. A. Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys. 1997 Nov;30(4):365–429. doi: 10.1017/s0033583597003375. [DOI] [PubMed] [Google Scholar]
  32. Vogt J., Schulz G. E. The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure. 1999 Oct 15;7(10):1301–1309. doi: 10.1016/s0969-2126(00)80063-5. [DOI] [PubMed] [Google Scholar]
  33. Wang Y. F., Dutzler R., Rizkallah P. J., Rosenbusch J. P., Schirmer T. Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin. J Mol Biol. 1997 Sep 12;272(1):56–63. doi: 10.1006/jmbi.1997.1224. [DOI] [PubMed] [Google Scholar]
  34. Weiss M. S., Schulz G. E. Structure of porin refined at 1.8 A resolution. J Mol Biol. 1992 Sep 20;227(2):493–509. doi: 10.1016/0022-2836(92)90903-w. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES