Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2798–2808. doi: 10.1016/S0006-3495(01)76247-9

Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle.

D A Martyn 1, A M Gordon 1
PMCID: PMC1301465  PMID: 11371454

Abstract

Linear dichroism of 5' tetramethyl-rhodamine (5'ATR) was measured to monitor the effect of sarcomere length (SL) on troponin C (TnC) structure during Ca2+ activation in single glycerinated rabbit psoas fibers and skinned right ventricular trabeculae from rats. Endogenous TnC was extracted, and the preparations were reconstituted with TnC fluorescently labeled with 5'ATR. In skinned psoas fibers reconstituted with sTnC labeled at Cys 98 with 5'ATR, dichroism was maximal during relaxation (pCa 9.2) and was minimal at pCa 4.0. In skinned cardiac trabeculae reconstituted with a mono-cysteine mutant cTnC (cTnC(C84)), dichroism of the 5'ATR probe attached to Cys 84 increased during Ca2+ activation of force. Force and dichroism-[Ca2+] relations were fit with the Hill equation to determine the pCa50 and slope (n). Increasing SL increased the Ca2+ sensitivity of force in both skinned psoas fibers and trabeculae. However, in skinned psoas fibers, neither SL changes or force inhibition had an effect on the Ca2+ sensitivity of dichroism. In contrast, increasing SL increased the Ca2+ sensitivity of both force and dichroism in skinned trabeculae. Furthermore, inhibition of force caused decreased Ca2+ sensitivity of dichroism, decreased dichroism at saturating [Ca2+], and loss of the influence of SL in cardiac muscle. The data indicate that in skeletal fibers SL-dependent shifts in the Ca2+ sensitivity of force are not caused by corresponding changes in Ca2+ binding to TnC and that strong cross-bridge binding has little effect on TnC structure at any SL or level of activation. On the other hand, in cardiac muscle, both force and activation-dependent changes in cTnC structure were influenced by SL. Additionally, the effect of SL on cardiac muscle activation was itself dependent on active, cycling cross-bridges.

Full Text

The Full Text of this article is available as a PDF (127.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenner B. Technique for stabilizing the striation pattern in maximally calcium-activated skinned rabbit psoas fibers. Biophys J. 1983 Jan;41(1):99–102. doi: 10.1016/S0006-3495(83)84411-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner B., Yu L. C. Equatorial x-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing. Biophys J. 1985 Nov;48(5):829–834. doi: 10.1016/S0006-3495(85)83841-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cantino M. E., Allen T. S., Gordon A. M. Subsarcomeric distribution of calcium in demembranated fibers of rabbit psoas muscle. Biophys J. 1993 Jan;64(1):211–222. doi: 10.1016/S0006-3495(93)81358-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chase P. B., Kushmerick M. J. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J. 1988 Jun;53(6):935–946. doi: 10.1016/S0006-3495(88)83174-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chase P. B., Martyn D. A., Hannon J. D. Isometric force redevelopment of skinned muscle fibers from rabbit activated with and without Ca2+. Biophys J. 1994 Nov;67(5):1994–2001. doi: 10.1016/S0006-3495(94)80682-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dong W., Rosenfeld S. S., Wang C. K., Gordon A. M., Cheung H. C. Kinetic studies of calcium binding to the regulatory site of troponin C from cardiac muscle. J Biol Chem. 1996 Jan 12;271(2):688–694. doi: 10.1074/jbc.271.2.688. [DOI] [PubMed] [Google Scholar]
  7. Fitzsimons D. P., Moss R. L. Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes. Circ Res. 1998 Sep 21;83(6):602–607. doi: 10.1161/01.res.83.6.602. [DOI] [PubMed] [Google Scholar]
  8. Fuchs F. On the relation between filament overlap and the number of calcium-binding sites on glycerinated muscle fibers. Biophys J. 1978 Mar;21(3):273–277. doi: 10.1016/S0006-3495(78)85524-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuchs F. The binding of calcium to glycerinated muscle fibers in rigor. The effect of filament overlap. Biochim Biophys Acta. 1977 Apr 25;491(2):523–531. doi: 10.1016/0005-2795(77)90297-5. [DOI] [PubMed] [Google Scholar]
  10. Fuchs F., Wang Y. P. Length-dependence of actin-myosin interaction in skinned cardiac muscle fibers in rigor. J Mol Cell Cardiol. 1997 Dec;29(12):3267–3274. doi: 10.1006/jmcc.1997.0552. [DOI] [PubMed] [Google Scholar]
  11. Fuchs F., Wang Y. P. Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding. J Mol Cell Cardiol. 1996 Jul;28(7):1375–1383. doi: 10.1006/jmcc.1996.0129. [DOI] [PubMed] [Google Scholar]
  12. Geeves M. A., Conibear P. B. The role of three-state docking of myosin S1 with actin in force generation. Biophys J. 1995 Apr;68(4 Suppl):194S–201S. [PMC free article] [PubMed] [Google Scholar]
  13. Geeves M. A., Lehrer S. S. Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys J. 1994 Jul;67(1):273–282. doi: 10.1016/S0006-3495(94)80478-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon A. M., Ridgway E. B. Extra calcium on shortening in barnacle muscle. Is the decrease in calcium binding related to decreased cross-bridge attachment, force, or length? J Gen Physiol. 1987 Sep;90(3):321–340. doi: 10.1085/jgp.90.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greaser M. L., Gergely J. Reconstitution of troponin activity from three protein components. J Biol Chem. 1971 Jul 10;246(13):4226–4233. [PubMed] [Google Scholar]
  16. Gulati J., Sonnenblick E., Babu A. The role of troponin C in the length dependence of Ca(2+)-sensitive force of mammalian skeletal and cardiac muscles. J Physiol. 1991 Sep;441:305–324. doi: 10.1113/jphysiol.1991.sp018753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hazard A. L., Kohout S. C., Stricker N. L., Putkey J. A., Falke J. J. The kinetic cycle of cardiac troponin C: calcium binding and dissociation at site II trigger slow conformational rearrangements. Protein Sci. 1998 Nov;7(11):2451–2459. doi: 10.1002/pro.5560071123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herzberg O., James M. N. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J Mol Biol. 1988 Oct 5;203(3):761–779. doi: 10.1016/0022-2836(88)90208-2. [DOI] [PubMed] [Google Scholar]
  19. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  20. Hibberd M. G., Jewell B. R. Calcium- and length-dependent force production in rat ventricular muscle. J Physiol. 1982 Aug;329:527–540. doi: 10.1113/jphysiol.1982.sp014317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Higuchi H., Takemori S. Butanedione monoxime suppresses contraction and ATPase activity of rabbit skeletal muscle. J Biochem. 1989 Apr;105(4):638–643. doi: 10.1093/oxfordjournals.jbchem.a122717. [DOI] [PubMed] [Google Scholar]
  22. Hofmann P. A., Fuchs F. Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C. Am J Physiol. 1987 Jul;253(1 Pt 1):C90–C96. doi: 10.1152/ajpcell.1987.253.1.C90. [DOI] [PubMed] [Google Scholar]
  23. Hofmann P. A., Fuchs F. Evidence for a force-dependent component of calcium binding to cardiac troponin C. Am J Physiol. 1987 Oct;253(4 Pt 1):C541–C546. doi: 10.1152/ajpcell.1987.253.4.C541. [DOI] [PubMed] [Google Scholar]
  24. Hofmann P. A., Fuchs F. Evidence for a force-dependent component of calcium binding to cardiac troponin C. Am J Physiol. 1987 Oct;253(4 Pt 1):C541–C546. doi: 10.1152/ajpcell.1987.253.4.C541. [DOI] [PubMed] [Google Scholar]
  25. Horiuti K., Higuchi H., Umazume Y., Konishi M., Okazaki O., Kurihara S. Mechanism of action of 2, 3-butanedione 2-monoxime on contraction of frog skeletal muscle fibres. J Muscle Res Cell Motil. 1988 Apr;9(2):156–164. doi: 10.1007/BF01773737. [DOI] [PubMed] [Google Scholar]
  26. Kawai M., Wray J. S., Zhao Y. The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. I. Proportionality between the lattice spacing and the fiber width. Biophys J. 1993 Jan;64(1):187–196. doi: 10.1016/S0006-3495(93)81356-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kentish J. C., ter Keurs H. E., Ricciardi L., Bucx J. J., Noble M. I. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res. 1986 Jun;58(6):755–768. doi: 10.1161/01.res.58.6.755. [DOI] [PubMed] [Google Scholar]
  28. Lehrer S. S., Geeves M. A. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol. 1998 Apr 17;277(5):1081–1089. doi: 10.1006/jmbi.1998.1654. [DOI] [PubMed] [Google Scholar]
  29. Lehrer S. S. The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J Muscle Res Cell Motil. 1994 Jun;15(3):232–236. doi: 10.1007/BF00123476. [DOI] [PubMed] [Google Scholar]
  30. Levine R. J., Kensler R. W., Yang Z., Stull J. T., Sweeney H. L. Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments. Biophys J. 1996 Aug;71(2):898–907. doi: 10.1016/S0006-3495(96)79293-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Levine R. J., Yang Z., Epstein N. D., Fananapazir L., Stull J. T., Sweeney H. L. Structural and functional responses of mammalian thick filaments to alterations in myosin regulatory light chains. J Struct Biol. 1998;122(1-2):149–161. doi: 10.1006/jsbi.1998.3980. [DOI] [PubMed] [Google Scholar]
  32. Li H. C., Fajer P. G. Orientational changes of troponin C associated with thin filament activation. Biochemistry. 1994 Nov 29;33(47):14324–14332. doi: 10.1021/bi00251a046. [DOI] [PubMed] [Google Scholar]
  33. Li M. X., Spyracopoulos L., Sykes B. D. Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry. 1999 Jun 29;38(26):8289–8298. doi: 10.1021/bi9901679. [DOI] [PubMed] [Google Scholar]
  34. Martyn D. A., Freitag C. J., Chase P. B., Gordon A. M. Ca2+ and cross-bridge-induced changes in troponin C in skinned skeletal muscle fibers: effects of force inhibition. Biophys J. 1999 Mar;76(3):1480–1493. doi: 10.1016/S0006-3495(99)77308-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Martyn D. A., Gordon A. M. Length and myofilament spacing-dependent changes in calcium sensitivity of skeletal fibres: effects of pH and ionic strength. J Muscle Res Cell Motil. 1988 Oct;9(5):428–445. doi: 10.1007/BF01774069. [DOI] [PubMed] [Google Scholar]
  36. Martyn D. A., Regnier M., Xu D., Gordon A. M. Ca2+ - and cross-bridge-dependent changes in N- and C-terminal structure of troponin C in rat cardiac muscle. Biophys J. 2001 Jan;80(1):360–370. doi: 10.1016/S0006-3495(01)76020-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Matsubara I., Umazume Y., Yagi N. Lateral filamentary spacing in chemically skinned murine muscles during contraction. J Physiol. 1985 Mar;360:135–148. doi: 10.1113/jphysiol.1985.sp015608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McDonald K. S., Field L. J., Parmacek M. S., Soonpaa M., Leiden J. M., Moss R. L. Length dependence of Ca2+ sensitivity of tension in mouse cardiac myocytes expressing skeletal troponin C. J Physiol. 1995 Feb 15;483(Pt 1):131–139. doi: 10.1113/jphysiol.1995.sp020573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. McDonald K. S., Moss R. L. Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length. Circ Res. 1995 Jul;77(1):199–205. doi: 10.1161/01.res.77.1.199. [DOI] [PubMed] [Google Scholar]
  40. McDonald K. S., Wolff M. R., Moss R. L. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres. J Physiol. 1997 Jun 15;501(Pt 3):607–621. doi: 10.1111/j.1469-7793.1997.607bm.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. McKillop D. F., Geeves M. A. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J. 1993 Aug;65(2):693–701. doi: 10.1016/S0006-3495(93)81110-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Moss R. L. Ca2+ regulation of mechanical properties of striated muscle. Mechanistic studies using extraction and replacement of regulatory proteins. Circ Res. 1992 May;70(5):865–884. doi: 10.1161/01.res.70.5.865. [DOI] [PubMed] [Google Scholar]
  43. Moss R. L., Giulian G. G., Greaser M. L. The effects of partial extraction of TnC upon the tension-pCa relationship in rabbit skinned skeletal muscle fibers. J Gen Physiol. 1985 Oct;86(4):585–600. doi: 10.1085/jgp.86.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Moss R. L., Swinford A. E., Greaser M. L. Alterations in the Ca2+ sensitivity of tension development by single skeletal muscle fibers at stretched lengths. Biophys J. 1983 Jul;43(1):115–119. doi: 10.1016/S0006-3495(83)84329-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Patel J. R., McDonald K. S., Wolff M. R., Moss R. L. Ca2+ binding to troponin C in skinned skeletal muscle fibers assessed with caged Ca2+ and a Ca2+ fluorophore. Invariance of Ca2+ binding as a function of sarcomere length. J Biol Chem. 1997 Feb 28;272(9):6018–6027. doi: 10.1074/jbc.272.9.6018. [DOI] [PubMed] [Google Scholar]
  46. Sia S. K., Li M. X., Spyracopoulos L., Gagné S. M., Liu W., Putkey J. A., Sykes B. D. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem. 1997 Jul 18;272(29):18216–18221. doi: 10.1074/jbc.272.29.18216. [DOI] [PubMed] [Google Scholar]
  47. Spyracopoulos L., Gagné S. M., Li M. X., Sykes B. D. Dynamics and thermodynamics of the regulatory domain of human cardiac troponin C in the apo- and calcium-saturated states. Biochemistry. 1998 Dec 22;37(51):18032–18044. doi: 10.1021/bi9816960. [DOI] [PubMed] [Google Scholar]
  48. Spyracopoulos L., Li M. X., Sia S. K., Gagné S. M., Chandra M., Solaro R. J., Sykes B. D. Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry. 1997 Oct 7;36(40):12138–12146. doi: 10.1021/bi971223d. [DOI] [PubMed] [Google Scholar]
  49. Stephenson D. G., Wendt I. R. Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J Muscle Res Cell Motil. 1984 Jun;5(3):243–272. doi: 10.1007/BF00713107. [DOI] [PubMed] [Google Scholar]
  50. Sweeney H. L., Yang Z., Zhi G., Stull J. T., Trybus K. M. Charge replacement near the phosphorylatable serine of the myosin regulatory light chain mimics aspects of phosphorylation. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1490–1494. doi: 10.1073/pnas.91.4.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tanner J. W., Thomas D. D., Goldman Y. E. Transients in orientation of a fluorescent cross-bridge probe following photolysis of caged nucleotides in skeletal muscle fibres. J Mol Biol. 1992 Jan 5;223(1):185–203. doi: 10.1016/0022-2836(92)90725-y. [DOI] [PubMed] [Google Scholar]
  52. Vandenboom R., Claflin D. R., Julian F. J. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres. J Physiol. 1998 Aug 15;511(Pt 1):171–180. doi: 10.1111/j.1469-7793.1998.171bi.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wang Y. P., Fuchs F. Length, force, and Ca(2+)-troponin C affinity in cardiac and slow skeletal muscle. Am J Physiol. 1994 Apr;266(4 Pt 1):C1077–C1082. doi: 10.1152/ajpcell.1994.266.4.C1077. [DOI] [PubMed] [Google Scholar]
  54. Wang Y. P., Fuchs F. Osmotic compression of skinned cardiac and skeletal muscle bundles: effects on force generation, Ca2+ sensitivity and Ca2+ binding. J Mol Cell Cardiol. 1995 Jun;27(6):1235–1244. doi: 10.1016/s0022-2828(05)82385-5. [DOI] [PubMed] [Google Scholar]
  55. Yang Z., Stull J. T., Levine R. J., Sweeney H. L. Changes in interfilament spacing mimic the effects of myosin regulatory light chain phosphorylation in rabbit psoas fibers. J Struct Biol. 1998;122(1-2):139–148. doi: 10.1006/jsbi.1998.3979. [DOI] [PubMed] [Google Scholar]
  56. Yates L. D., Coby R. L., Luo Z., Gordon A. M. Filament overlap affects TnC extraction from skinned muscle fibres. J Muscle Res Cell Motil. 1993 Aug;14(4):392–400. doi: 10.1007/BF00121290. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES