Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2809–2822. doi: 10.1016/S0006-3495(01)76248-0

Frequency-dependent distortion of meridional intensity changes during sinusoidal length oscillations of activated skeletal muscle.

M A Bagni 1, B Colombini 1, H Amenitsch 1, S Bernstorff 1, C C Ashley 1, G Rapp 1, P J Griffiths 1
PMCID: PMC1301466  PMID: 11371455

Abstract

Bundles of intact, tetanized skeletal muscle fibers from Rana temporaria were subjected to sinusoidal length oscillations in the frequency domain 100 Hz to 3 kHz while measuring force and sarcomere length. Simultaneously, intensity of the third-order x-ray reflection of the axial myosin unit cell (I(M3)) was measured using synchrotron radiation. At oscillation frequencies <1 kHz, I(M3) was distorted during the shortening phase of the sinusoid (i.e., where bundle length was less than rest length). Otherwise, during the stretch phase of oscillations at all frequencies, during the shortening phase of oscillations above 1 kHz, and for bundles in the rigor state, I(M3) was approximately sinusoidal in form. Mean I(M3) during oscillations was reduced by 20% compared to the isometric value, suggesting a possible change in S1 disposition during oscillations. However, the amplitude of length change required to produce distortion (estimated from the phase angle at which distortion was first evident) corresponded to that of a step release sufficient to reach the maximum I(M3), indicating a mean S1 disposition during oscillations close to that during an isometric tetanus. The mechanical properties of the bundle during oscillations were also consistent with an unaltered S1 disposition during oscillations.

Full Text

The Full Text of this article is available as a PDF (229.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagni M. A., Cecchi G., Colombini B., Colomo F. Sarcomere tension-stiffness relation during the tetanus rise in single frog muscle fibres. J Muscle Res Cell Motil. 1999 Aug;20(5-6):469–476. doi: 10.1023/a:1005582324129. [DOI] [PubMed] [Google Scholar]
  2. Bischoff A., Stickan-Verfürth M., Michel M. C. Renovascular and tubular effects of neuropeptide Y are discriminated by PP56 (D-myo-inositol 1,2,6-triphosphate) in anaesthetized rats. Pflugers Arch. 1997 May;434(1):57–62. doi: 10.1007/s004240050362. [DOI] [PubMed] [Google Scholar]
  3. Corrie J. E., Brandmeier B. D., Ferguson R. E., Trentham D. R., Kendrick-Jones J., Hopkins S. C., van der Heide U. A., Goldman Y. E., Sabido-David C., Dale R. E. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature. 1999 Jul 29;400(6743):425–430. doi: 10.1038/22704. [DOI] [PubMed] [Google Scholar]
  4. Dobbie I., Linari M., Piazzesi G., Reconditi M., Koubassova N., Ferenczi M. A., Lombardi V., Irving M. Elastic bending and active tilting of myosin heads during muscle contraction. Nature. 1998 Nov 26;396(6709):383–387. doi: 10.1038/24647. [DOI] [PubMed] [Google Scholar]
  5. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  6. Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffiths P. J., Amenitsch H., Ashley C. C., Bagni M. A., Bernstorff S., Cecchi G., Colombini B., Rapp G. Studies on the 14.5 nm meridional X-ray diffraction reflection during length changes of intact frog muscle fibres. Adv Exp Med Biol. 1998;453:247–258. doi: 10.1007/978-1-4684-6039-1_29. [DOI] [PubMed] [Google Scholar]
  8. Highsmith S. Lever arm model of force generation by actin-myosin-ATP. Biochemistry. 1999 Aug 3;38(31):9791–9797. doi: 10.1021/bi9907633. [DOI] [PubMed] [Google Scholar]
  9. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  10. Huxley H. E., Faruqi A. R., Kress M., Bordas J., Koch M. H. Time-resolved X-ray diffraction studies of the myosin layer-line reflections during muscle contraction. J Mol Biol. 1982 Jul 15;158(4):637–684. doi: 10.1016/0022-2836(82)90253-4. [DOI] [PubMed] [Google Scholar]
  11. Huxley H. E., Simmons R. M., Faruqi A. R., Kress M., Bordas J., Koch M. H. Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications. J Mol Biol. 1983 Sep 15;169(2):469–506. doi: 10.1016/s0022-2836(83)80062-x. [DOI] [PubMed] [Google Scholar]
  12. Huxley H. E., Stewart A., Sosa H., Irving T. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J. 1994 Dec;67(6):2411–2421. doi: 10.1016/S0006-3495(94)80728-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Irving M., Lombardi V., Piazzesi G., Ferenczi M. A. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature. 1992 May 14;357(6374):156–158. doi: 10.1038/357156a0. [DOI] [PubMed] [Google Scholar]
  14. Linari M., Piazzesi G., Dobbie I., Koubassova N., Reconditi M., Narayanan T., Diat O., Irving M., Lombardi V. Interference fine structure and sarcomere length dependence of the axial x-ray pattern from active single muscle fibers. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7226–7231. doi: 10.1073/pnas.97.13.7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lombardi V., Piazzesi G., Ferenczi M. A., Thirlwell H., Dobbie I., Irving M. Elastic distortion of myosin heads and repriming of the working stroke in muscle. Nature. 1995 Apr 6;374(6522):553–555. doi: 10.1038/374553a0. [DOI] [PubMed] [Google Scholar]
  16. Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
  17. Piazzesi G., Francini F., Linari M., Lombardi V. Tension transients during steady lengthening of tetanized muscle fibres of the frog. J Physiol. 1992 Jan;445:659–711. doi: 10.1113/jphysiol.1992.sp018945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Piazzesi G., Lombardi V., Ferenczi M. A., Thirlwell H., Dobbie I., Irving M. Changes in the x-ray diffraction pattern from single, intact muscle fibers produced by rapid shortening and stretch. Biophys J. 1995 Apr;68(4 Suppl):92S–98S. [PMC free article] [PubMed] [Google Scholar]
  19. Tokunaga M., Sutoh K., Toyoshima C., Wakabayashi T. Location of the ATPase site of myosin determined by three-dimensional electron microscopy. Nature. 1987 Oct 15;329(6140):635–638. doi: 10.1038/329635a0. [DOI] [PubMed] [Google Scholar]
  20. Wakabayashi K., Sugimoto Y., Tanaka H., Ueno Y., Takezawa Y., Amemiya Y. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J. 1994 Dec;67(6):2422–2435. doi: 10.1016/S0006-3495(94)80729-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wakabayashi K., Tanaka H., Kobayashi T., Amemiya Y., Hamanaka T., Nishizawa S., Sugi H., Mitsui T. Time-resolved x-ray study of effect of sinusoidal length change on tetanized frog muscle. Biophys J. 1986 Feb;49(2):581–584. doi: 10.1016/S0006-3495(86)83670-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES