Abstract
Two different spin labels, N-(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidinyl)iodoacetamide (IPSL) and (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate (MTSSL), and two different fluorescent labels 5-((((2-iodoacetyl)amino)-ethyl)amino)naphtalene-1-sulfonic acid (IAEDANS) and 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN), were attached to the introduced C79 in human carbonic anhydrase (HCA II) to probe local structural changes upon unfolding and aggregation. HCA II unfolds in a multi-step manner with an intermediate state populated between the native and unfolded states. The spin label IPSL and the fluorescent label IAEDANS reported on a substantial change in mobility and polarity at both unfolding transitions at a distance of 7.4-11.2 A from the backbone of position 79. The shorter and less flexible labels BADAN and MTSSL revealed less pronounced spectroscopic changes in the native-to-intermediate transition, 6.6-9.0 A from the backbone. At intermediate guanidine (Gu)-HCl concentrations the occurrence of soluble but irreversibly aggregated oligomeric protein was identified from refolding experiments. At approximately 1 M Gu-HCl the aggregation was found to be essentially complete. The size and structure of the aggregates could be varied by changing the protein concentration. EPR measurements and line-shape simulations together with fluorescence lifetime and anisotropy measurements provided a picture of the self-assembled protein as a disordered protein structure with a representation of both compact as well as dynamic and polar environments at the site of the molecular labels. This suggests that a partially folded intermediate of HCA II self-assembles by both local unfolding and intermolecular docking of the intermediates vicinal to position 79. The aggregates were determined to be 40-90 A in diameter depending on the experimental conditions and spectroscopic technique used.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander R. S., Nair S. K., Christianson D. W. Engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry. 1991 Nov 19;30(46):11064–11072. doi: 10.1021/bi00110a008. [DOI] [PubMed] [Google Scholar]
- Armstrong J. M., Myers D. V., Verpoorte J. A., Edsall J. T. Purification and properties of human erythrocyte carbonic anhydrases. J Biol Chem. 1966 Nov 10;241(21):5137–5149. [PubMed] [Google Scholar]
- Ballery N., Minard P., Desmadril M., Betton J. M., Perahia D., Mouawad L., Hall L., Yon J. M. Introduction of internal cysteines as conformational probes in yeast phosphoglycerate kinase. Protein Eng. 1990 Jan;3(3):199–204. doi: 10.1093/protein/3.3.199. [DOI] [PubMed] [Google Scholar]
- Birkett D. J., Dwek R. A., Radda G. K., Richards R. E., Salmon A. G. Probes for the conformational transitions of phosphorylase b. Effect of ligands studied by proton relaxation enhancement, fluorescence and chemical reactivities. Eur J Biochem. 1971 Jun 29;20(4):494–508. doi: 10.1111/j.1432-1033.1971.tb01419.x. [DOI] [PubMed] [Google Scholar]
- Carlsson U., Aasa R., Henderson L. E., Jonsson B. H., Lindskog S. Paramagnetic and fluorescent probes attached to "buried" sulfhydryl groups in human carbonic anhydrases. Application to inhibitor binding, denaturation and refolding. Eur J Biochem. 1975 Mar 3;52(1):25–36. doi: 10.1111/j.1432-1033.1975.tb03969.x. [DOI] [PubMed] [Google Scholar]
- Eriksson A. E., Jones T. A., Liljas A. Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins. 1988;4(4):274–282. doi: 10.1002/prot.340040406. [DOI] [PubMed] [Google Scholar]
- Fayet O., Ziegelhoffer T., Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 1989 Mar;171(3):1379–1385. doi: 10.1128/jb.171.3.1379-1385.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fierke C. A., Calderone T. L., Krebs J. F. Functional consequences of engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry. 1991 Nov 19;30(46):11054–11063. doi: 10.1021/bi00110a007. [DOI] [PubMed] [Google Scholar]
- Freskgård P. O., Carlsson U., Mårtensson L. G., Jonsson B. H. Folding around the C-terminus of human carbonic anhydrase II. Kinetic characterization by use of a chemically reactive SH-group introduced by protein engineering. FEBS Lett. 1991 Sep 2;289(1):117–122. doi: 10.1016/0014-5793(91)80922-p. [DOI] [PubMed] [Google Scholar]
- Freskgård P. O., Mårtensson L. G., Jonasson P., Jonsson B. H., Carlsson U. Assignment of the contribution of the tryptophan residues to the circular dichroism spectrum of human carbonic anhydrase II. Biochemistry. 1994 Nov 29;33(47):14281–14288. doi: 10.1021/bi00251a041. [DOI] [PubMed] [Google Scholar]
- Hammarström P., Kalman B., Jonsson B. H., Carlsson U. Pyrene excimer fluorescence as a proximity probe for investigation of residual structure in the unfolded state of human carbonic anhydrase II. FEBS Lett. 1997 Dec 22;420(1):63–68. doi: 10.1016/s0014-5793(97)01488-9. [DOI] [PubMed] [Google Scholar]
- Hammarström P., Persson M., Freskgârd P. O., Mârtensson L. G., Andersson D., Jonsson B. H., Carlsson U. Structural mapping of an aggregation nucleation site in a molten globule intermediate. J Biol Chem. 1999 Nov 12;274(46):32897–32903. doi: 10.1074/jbc.274.46.32897. [DOI] [PubMed] [Google Scholar]
- Heiden W., Moeckel G., Brickmann J. A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J Comput Aided Mol Des. 1993 Oct;7(5):503–514. doi: 10.1007/BF00124359. [DOI] [PubMed] [Google Scholar]
- Hubbell W. L., Gross A., Langen R., Lietzow M. A. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol. 1998 Oct;8(5):649–656. doi: 10.1016/s0959-440x(98)80158-9. [DOI] [PubMed] [Google Scholar]
- Håkansson K., Carlsson M., Svensson L. A., Liljas A. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol. 1992 Oct 20;227(4):1192–1204. doi: 10.1016/0022-2836(92)90531-n. [DOI] [PubMed] [Google Scholar]
- Khalifah R. G., Strader D. J., Bryant S. H., Gibson S. M. Carbon-13 nuclear magnetic resonance probe of active-site ionizations in human carbonic anhydrase B. Biochemistry. 1977 May 17;16(10):2241–2247. doi: 10.1021/bi00629a031. [DOI] [PubMed] [Google Scholar]
- Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., Morgan T. E., Rozovsky I., Trommer B., Viola K. L. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6448–6453. doi: 10.1073/pnas.95.11.6448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindgren M., Svensson M., Freskgård P. O., Carlsson U., Jonasson P., Mårtensson L. G., Jonsson B. H. Characterization of a folding intermediate of human carbonic anhydrase II: probing local mobility by electron paramagnetic resonance. Biophys J. 1995 Jul;69(1):202–213. doi: 10.1016/S0006-3495(95)79892-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mansoor S. E., McHaourab H. S., Farrens D. L. Determination of protein secondary structure and solvent accessibility using site-directed fluorescence labeling. Studies of T4 lysozyme using the fluorescent probe monobromobimane. Biochemistry. 1999 Dec 7;38(49):16383–16393. doi: 10.1021/bi991331v. [DOI] [PubMed] [Google Scholar]
- Millhauser G. L., Fiori W. R., Miick S. M. Electron spin labels. Methods Enzymol. 1995;246:589–610. doi: 10.1016/0076-6879(95)46026-8. [DOI] [PubMed] [Google Scholar]
- Mårtensson L. G., Jonasson P., Freskgård P. O., Svensson M., Carlsson U., Jonsson B. H. Contribution of individual tryptophan residues to the fluorescence spectrum of native and denatured forms of human carbonic anhydrase II. Biochemistry. 1995 Jan 24;34(3):1011–1021. doi: 10.1021/bi00003a036. [DOI] [PubMed] [Google Scholar]
- Mårtensson L. G., Jonsson B. H., Freskgård P. O., Kihlgren A., Svensson M., Carlsson U. Characterization of folding intermediates of human carbonic anhydrase II: probing substructure by chemical labeling of SH groups introduced by site-directed mutagenesis. Biochemistry. 1993 Jan 12;32(1):224–231. doi: 10.1021/bi00052a029. [DOI] [PubMed] [Google Scholar]
- NYMAN P., LINDSKOG S. AMINO ACID COMPOSITION OF VARIOUS FORMS OF BOVINE AND HUMAN ERYTHROCYTE CARBONIC ANHYDRASE. Biochim Biophys Acta. 1964 Apr 6;85:141–151. doi: 10.1016/0926-6569(64)90174-9. [DOI] [PubMed] [Google Scholar]
- Nozaki Y. The preparation of guanidine hydrochloride. Methods Enzymol. 1972;26:43–50. doi: 10.1016/s0076-6879(72)26005-0. [DOI] [PubMed] [Google Scholar]
- Owenius R., Osterlund M., Lindgren M., Svensson M., Olsen O. H., Persson E., Freskgård P. O., Carlsson U. Properties of spin and fluorescent labels at a receptor-ligand interface. Biophys J. 1999 Oct;77(4):2237–2250. doi: 10.1016/S0006-3495(99)77064-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Svensson M., Jonasson P., Freskgård P. O., Jonsson B. H., Lindgren M., Mårtensson L. G., Gentile M., Borén K., Carlsson U. Mapping the folding intermediate of human carbonic anhydrase II. Probing substructure by chemical reactivity and spin and fluorescence labeling of engineered cysteine residues. Biochemistry. 1995 Jul 11;34(27):8606–8620. doi: 10.1021/bi00027a010. [DOI] [PubMed] [Google Scholar]