Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2898–2911. doi: 10.1016/S0006-3495(01)76255-8

Detergents as probes of hydrophobic binding cavities in serum albumin and other water-soluble proteins.

U Kragh-Hansen 1, F Hellec 1, B de Foresta 1, M le Maire 1, J V Møller 1
PMCID: PMC1301473  PMID: 11371462

Abstract

As an extension of our studies on the interaction of detergents with membranes and membrane proteins, we have investigated their binding to water-soluble proteins. Anionic aliphatic compounds (dodecanoate and dodecylsulfate) were bound to serum albumin with high affinity at nine sites; related nonionic detergents (C12E8 and dodecylmaltoside) were bound at seven to eight sites, many in common with those of dodecanoate. The compounds were also bound in the hydrophobic cavity of beta-lactoglobulin, but not to ovalbumin. In addition to the generally recognized role of the Sudlow binding region II of serum albumin (localized at the IIIA subdomain) in fatty acid binding, quenching of the fluorescence intensity of tryptophan-214 by 7,8-dibromododecylmaltoside and 12-bromododecanoate also implicate the Sudlow binding region I (subdomain IIA) as a locus for binding of aliphatic compounds. Our data document the usefulness of dodecyl amphipathic compounds as probes of hydrophobic cavities in water-soluble proteins. In conjunction with recent x-ray diffraction analyses of fatty acid binding as the starting point we propose a new symmetrical binding model for the location of nine high-affinity sites on serum albumin for aliphatic compounds.

Full Text

The Full Text of this article is available as a PDF (260.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. P., Le Maire M., Kragh-Hansen U., Champeil P., Møller J. V. Perturbation of the structure and function of a membranous Ca2+-ATPase by non-solubilizing concentrations of a non-ionic detergent. Eur J Biochem. 1983 Aug 1;134(2):205–214. doi: 10.1111/j.1432-1033.1983.tb07552.x. [DOI] [PubMed] [Google Scholar]
  2. Arluison V., Batelier G., Riès-Kautt M., Grosjean H. RNA:pseudouridine synthetase Pus1 from Saccharomyces cerevisiae: oligomerization property and stoichiometry of the complex with yeast tRNA(Phe). Biochimie. 1999 Jul;81(7):751–756. doi: 10.1016/s0300-9084(99)80133-3. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharya A. A., Grüne T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol. 2000 Nov 10;303(5):721–732. doi: 10.1006/jmbi.2000.4158. [DOI] [PubMed] [Google Scholar]
  4. Bolen E. J., Holloway P. W. Quenching of tryptophan fluorescence by brominated phospholipid. Biochemistry. 1990 Oct 16;29(41):9638–9643. doi: 10.1021/bi00493a019. [DOI] [PubMed] [Google Scholar]
  5. Carter D. C., Ho J. X. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203. doi: 10.1016/s0065-3233(08)60640-3. [DOI] [PubMed] [Google Scholar]
  6. Champeil P., le Maire M., Andersen J. P., Guillain F., Gingold M., Lund S., Møller J. V. Kinetic characterization of the normal and detergent-perturbed reaction cycles of the sarcoplasmic reticulum calcium pump. Rate-limiting step(s) under different conditions. J Biol Chem. 1986 Dec 15;261(35):16372–16384. [PubMed] [Google Scholar]
  7. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  8. Cistola D. P., Hamilton J. A., Jackson D., Small D. M. Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry. 1988 Mar 22;27(6):1881–1888. doi: 10.1021/bi00406a013. [DOI] [PubMed] [Google Scholar]
  9. Cistola D. P., Small D. M., Hamilton J. A. Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. II. Electrostatic interactions in individual fatty acid binding sites. J Biol Chem. 1987 Aug 15;262(23):10980–10985. [PubMed] [Google Scholar]
  10. Curry S., Brick P., Franks N. P. Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta. 1999 Nov 23;1441(2-3):131–140. doi: 10.1016/s1388-1981(99)00148-1. [DOI] [PubMed] [Google Scholar]
  11. Curry S., Mandelkow H., Brick P., Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998 Sep;5(9):827–835. doi: 10.1038/1869. [DOI] [PubMed] [Google Scholar]
  12. De Foresta B., Henao F., Champeil P. Cancellation of the cooperativity of Ca2+ binding to sarcoplasmic reticulum Ca(2+)-ATPase by the non-ionic detergent dodecylmaltoside. Eur J Biochem. 1994 Jul 15;223(2):359–369. doi: 10.1111/j.1432-1033.1994.tb19002.x. [DOI] [PubMed] [Google Scholar]
  13. De Foresta B., Legros N., Plusquellec D., Le Maire M., Champeil P. Brominated detergents as tools to study protein-detergent interactions. Eur J Biochem. 1996 Oct 15;241(2):343–354. doi: 10.1111/j.1432-1033.1996.00343.x. [DOI] [PubMed] [Google Scholar]
  14. Froud R. J., East J. M., Rooney E. K., Lee A. G. Binding of long-chain alkyl derivatives to lipid bilayers and to (Ca2+-Mg2+)-ATPase. Biochemistry. 1986 Nov 18;25(23):7535–7544. doi: 10.1021/bi00371a042. [DOI] [PubMed] [Google Scholar]
  15. Halfman C. J., Nishida T. Method for measuring the binding of small molecules to proteins from binding-induced alterations of physical-chemical properties. Biochemistry. 1972 Aug 29;11(18):3493–3498. doi: 10.1021/bi00768a025. [DOI] [PubMed] [Google Scholar]
  16. Hamilton J. A., Era S., Bhamidipati S. P., Reed R. G. Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2051–2054. doi: 10.1073/pnas.88.6.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358(6383):209–215. doi: 10.1038/358209a0. [DOI] [PubMed] [Google Scholar]
  18. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  19. Huang W. H., Kakar S. S., Askari A. Mechanisms of detergent effects on membrane-bound (Na+ + K+)-ATPase. J Biol Chem. 1985 Jun 25;260(12):7356–7361. [PubMed] [Google Scholar]
  20. Klotz I. M., Hunston D. L. Protein affinities for small molecules: conceptions and misconceptions. Arch Biochem Biophys. 1979 Apr 1;193(2):314–328. doi: 10.1016/0003-9861(79)90036-5. [DOI] [PubMed] [Google Scholar]
  21. Kragh-Hansen U. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands. Mol Pharmacol. 1988 Aug;34(2):160–171. [PubMed] [Google Scholar]
  22. Kragh-Hansen U. Structure and ligand binding properties of human serum albumin. Dan Med Bull. 1990 Feb;37(1):57–84. [PubMed] [Google Scholar]
  23. Kragh-Hansen U., Vorum H. Quantitative analyses of the interaction between calcium ions and human serum albumin. Clin Chem. 1993 Feb;39(2):202–208. [PubMed] [Google Scholar]
  24. Kragh-Hansen U., le Maire M., Møller J. V. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J. 1998 Dec;75(6):2932–2946. doi: 10.1016/S0006-3495(98)77735-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kragh-Hansen U., le Maire M., Nöel J. P., Gulik-Krzywicki T., Møller J. V. Transitional steps in the solubilization of protein-containing membranes and liposomes by nonionic detergent. Biochemistry. 1993 Feb 16;32(6):1648–1656. doi: 10.1021/bi00057a032. [DOI] [PubMed] [Google Scholar]
  26. Lasch J. Interaction of detergents with lipid vesicles. Biochim Biophys Acta. 1995 Jul 17;1241(2):269–292. doi: 10.1016/0304-4157(95)00010-o. [DOI] [PubMed] [Google Scholar]
  27. Lind K. E., Moller J. V. Ligand-apomyoglobin interactions. Configurational adaptability of the haem-binding site. Biochem J. 1976 Jun 1;155(3):669–678. doi: 10.1042/bj1550669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Makino S., Reynolds J. A., Tanford C. The binding of deoxycholate and Triton X-100 to proteins. J Biol Chem. 1973 Jul 25;248(14):4926–4932. [PubMed] [Google Scholar]
  29. McIntosh D. B., Davidson G. A. Effects of nonsolubilizing and solubilizing concentrations of Triton X-100 on Ca2+ binding and Ca2+-ATPase activity of sarcoplasmic reticulum. Biochemistry. 1984 Apr 24;23(9):1959–1965. doi: 10.1021/bi00304a012. [DOI] [PubMed] [Google Scholar]
  30. McPherson A., Koszelak S., Axelrod H., Day J., Williams R., Robinson L., McGrath M., Cascio D. An experiment regarding crystallization of soluble proteins in the presence of beta-octyl glucoside. J Biol Chem. 1986 Feb 5;261(4):1969–1975. [PubMed] [Google Scholar]
  31. Michelangeli F., East J. M., Lee A. G. Structural effects on the interaction of sterols with the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1990 Jun 11;1025(1):99–108. doi: 10.1016/0005-2736(90)90196-u. [DOI] [PubMed] [Google Scholar]
  32. Minghetti P. P., Ruffner D. E., Kuang W. J., Dennison O. E., Hawkins J. W., Beattie W. G., Dugaiczyk A. Molecular structure of the human albumin gene is revealed by nucleotide sequence within q11-22 of chromosome 4. J Biol Chem. 1986 May 25;261(15):6747–6757. [PubMed] [Google Scholar]
  33. Mokus M., Kragh-Hansen U., Letellier P., le Maire M., Møller J. V. Construction and use of a detergent-sensitive electrode to measure dodecyl sulfate activity and binding. Anal Biochem. 1998 Nov 1;264(1):34–40. doi: 10.1006/abio.1998.2810. [DOI] [PubMed] [Google Scholar]
  34. Nozaki Y., Schechter N. M., Reynolds J. A., Tanford C. Use of gel chromatography for the determination of the Stokes radii of proteins in the presence and absence of detergents. A reexamination. Biochemistry. 1976 Aug 24;15(17):3884–3890. doi: 10.1021/bi00662a036. [DOI] [PubMed] [Google Scholar]
  35. Orlowski S., Selosse M. A., Boudon C., Micoud C., Mir L. M., Belehradek J., Jr, Garrigos M. Effects of detergents on P-glycoprotein atpase activity: differences in perturbations of basal and verapamil-dependent activities. Cancer Biochem Biophys. 1998 Jun;16(1-2):85–110. [PubMed] [Google Scholar]
  36. Pedersen A. O., Hust B., Andersen S., Nielsen F., Brodersen R. Laurate binding to human serum albumin. Multiple binding equilibria investigated by a dialysis exchange method. Eur J Biochem. 1986 Feb 3;154(3):545–552. doi: 10.1111/j.1432-1033.1986.tb09433.x. [DOI] [PubMed] [Google Scholar]
  37. Pedersen A. O., Mensberg K. L., Kragh-Hansen U. Effects of ionic strength and pH on the binding of medium-chain fatty acids to human serum albumin. Eur J Biochem. 1995 Oct 15;233(2):395–405. doi: 10.1111/j.1432-1033.1995.395_2.x. [DOI] [PubMed] [Google Scholar]
  38. Qin B. Y., Creamer L. K., Baker E. N., Jameson G. B. 12-Bromododecanoic acid binds inside the calyx of bovine beta-lactoglobulin. FEBS Lett. 1998 Nov 6;438(3):272–278. doi: 10.1016/s0014-5793(98)01199-5. [DOI] [PubMed] [Google Scholar]
  39. Ray A., Reynolds J. A., Polet H., Steinhardt J. Binding of large organic anions and neutral molecules by native bovine serum albumin. Biochemistry. 1966 Aug;5(8):2606–2616. doi: 10.1021/bi00872a019. [DOI] [PubMed] [Google Scholar]
  40. Reed R. G., Feldhoff R. C., Clute O. L., Peters T., Jr Fragments of bovine serum albumin produced by limited proteolysis. Conformation and ligand binding. Biochemistry. 1975 Oct 21;14(21):4578–4583. doi: 10.1021/bi00692a004. [DOI] [PubMed] [Google Scholar]
  41. Reed R. G., Feldhoff R. C., Peters T., Jr Fragments of bovine serum albumin produced by limited proteolysis: complementary behavior of two large fragments. Biochemistry. 1976 Nov 30;15(24):5394–5398. doi: 10.1021/bi00669a028. [DOI] [PubMed] [Google Scholar]
  42. Reed R. G. Location of long chain fatty acid-binding sites of bovine serum albumin by affinity labeling. J Biol Chem. 1986 Nov 25;261(33):15619–15624. [PubMed] [Google Scholar]
  43. Soulié S., de Foresta B., Møller J. V., Bloomberg G. B., Groves J. D., le Maire M. Spectroscopic studies of the interaction of Ca2+-ATPase-peptides with dodecyl maltoside and its brominated analog. Eur J Biochem. 1998 Oct 1;257(1):216–227. doi: 10.1046/j.1432-1327.1998.2570216.x. [DOI] [PubMed] [Google Scholar]
  44. Spector A. A. Fatty acid binding to plasma albumin. J Lipid Res. 1975 May;16(3):165–179. [PubMed] [Google Scholar]
  45. Steinhardt J., Krijn J., Leidy J. G. Differences between bovine and human serum albumins: binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochemistry. 1971 Oct 26;10(22):4005–4015. doi: 10.1021/bi00798a001. [DOI] [PubMed] [Google Scholar]
  46. Sudlow G., Birkett D. J., Wade D. N. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976 Nov;12(6):1052–1061. [PubMed] [Google Scholar]
  47. Sudlow G., Birkett D. J., Wade D. N. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol. 1975 Nov;11(6):824–832. [PubMed] [Google Scholar]
  48. Sukow W. W., Sandberg H. E., Lewis E. A., Eatough D. J., Hansen L. D. Binding of the Triton X series of nonionic surfactants to bovine serum albumin. Biochemistry. 1980 Mar 4;19(5):912–917. doi: 10.1021/bi00546a014. [DOI] [PubMed] [Google Scholar]
  49. Tanford C. Hydrophobic free energy, micelle formation and the association of proteins with amphiphiles. J Mol Biol. 1972 Jun 14;67(1):59–74. doi: 10.1016/0022-2836(72)90386-5. [DOI] [PubMed] [Google Scholar]
  50. Tanford C., Reynolds J. A. Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta. 1976 Oct 26;457(2):133–170. doi: 10.1016/0304-4157(76)90009-5. [DOI] [PubMed] [Google Scholar]
  51. Tribout M., Paredes S., González-Mañas J. M., Goñi F. M. Binding of Triton X-100 to bovine serum albumin as studied by surface tension measurements. J Biochem Biophys Methods. 1991 Feb-Mar;22(2):129–133. doi: 10.1016/0165-022x(91)90025-r. [DOI] [PubMed] [Google Scholar]
  52. Wasylewski Z., Kozik A. Protein--non-ionic detergent interaction. Interaction of bovine serum albumin with alkyl glucosides studied by equilibrium dialysis and infrared spectroscopy. Eur J Biochem. 1979 Mar 15;95(1):121–126. doi: 10.1111/j.1432-1033.1979.tb12946.x. [DOI] [PubMed] [Google Scholar]
  53. Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim Biophys Acta. 1996 Jul 18;1295(2):147–157. doi: 10.1016/0167-4838(96)00013-1. [DOI] [PubMed] [Google Scholar]
  54. de Foresta B., Gallay J., Sopkova J., Champeil P., Vincent M. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs. Biophys J. 1999 Dec;77(6):3071–3084. doi: 10.1016/S0006-3495(99)77138-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. le Maire M., Champeil P., Moller J. V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta. 2000 Nov 23;1508(1-2):86–111. doi: 10.1016/s0304-4157(00)00010-1. [DOI] [PubMed] [Google Scholar]
  56. le Maire M., Møller J. V., Champeil P. Binding of a nonionic detergent to membranes: flip-flop rate and location on the bilayer. Biochemistry. 1987 Jul 28;26(15):4803–4810. doi: 10.1021/bi00389a030. [DOI] [PubMed] [Google Scholar]
  57. le Maire M., Rivas E., Møller J. V. Use of gel chromatography for determination of size and molecular weight of proteins: further caution. Anal Biochem. 1980 Jul 15;106(1):12–21. doi: 10.1016/0003-2697(80)90112-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES