Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2912–2921. doi: 10.1016/S0006-3495(01)76256-X

Plasticity in protein-peptide recognition: crystal structures of two different peptides bound to concanavalin A.

D Jain 1, K J Kaur 1, D M Salunke 1
PMCID: PMC1301474  PMID: 11371463

Abstract

The structures of concanavalin A (ConA) in complex with two carbohydrate-mimicking peptides, 10-mer (MYWYPYASGS) and 15-mer (RVWYPYGSYLTASGS) have been determined at 2.75 A resolution. In both crystal structures four independent peptide molecules bind to each of the crystallographically independent subunits of ConA tetramer. The peptides exhibit small but significant variability in conformations and interactions while binding to ConA. The crystal structure of another similar peptide, 12-mer (DVFYPYPYASGS), in complex with ConA has been determined (Jain, D., K. J. Kaur, B. Sundaravadivel, and D. M. Salunke. 2000. Structural and functional consequences of peptide-carbohydrate mimicry. J. Biol. Chem. 275:16098-16102). Comparison of the three complexes shows that the peptides bind to ConA at a common binding site, using different contacting residues and interactions depending on their sequence and the local environment at the binding site. The binding is also optimized by corresponding plasticity of the peptide binding site on ConA. The diversity in conformation and interactions observed here are in agreement with the structural leeway concerning plasticity of specific molecular recognition in biological processes. The adaptability of peptide-ConA interactions may also be correlated with the carbohydrate-mimicking property of these peptides.

Full Text

The Full Text of this article is available as a PDF (213.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arevalo J. H., Taussig M. J., Wilson I. A. Molecular basis of crossreactivity and the limits of antibody-antigen complementarity. Nature. 1993 Oct 28;365(6449):859–863. doi: 10.1038/365859a0. [DOI] [PubMed] [Google Scholar]
  2. Bone R., Silen J. L., Agard D. A. Structural plasticity broadens the specificity of an engineered protease. Nature. 1989 May 18;339(6221):191–195. doi: 10.1038/339191a0. [DOI] [PubMed] [Google Scholar]
  3. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  4. Chen L., Sigler P. B. The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell. 1999 Dec 23;99(7):757–768. doi: 10.1016/s0092-8674(00)81673-6. [DOI] [PubMed] [Google Scholar]
  5. Garcia K. C., Degano M., Pease L. R., Huang M., Peterson P. A., Teyton L., Wilson I. A. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science. 1998 Feb 20;279(5354):1166–1172. doi: 10.1126/science.279.5354.1166. [DOI] [PubMed] [Google Scholar]
  6. Hardman K. D., Ainsworth C. F. Structure of concanavalin A at 2.4-A resolution. Biochemistry. 1972 Dec 19;11(26):4910–4919. doi: 10.1021/bi00776a006. [DOI] [PubMed] [Google Scholar]
  7. Jain D., Kaur K. J., Goel M., Salunke D. M. Structural basis of functional mimicry between carbohydrate and peptide ligands of con A. Biochem Biophys Res Commun. 2000 Jun 16;272(3):843–849. doi: 10.1006/bbrc.2000.2871. [DOI] [PubMed] [Google Scholar]
  8. Jain D., Kaur K., Sundaravadivel B., Salunke D. M. Structural and functional consequences of peptide-carbohydrate mimicry. Crystal structure of a carbohydrate-mimicking peptide bound to concanavalin A. J Biol Chem. 2000 May 26;275(21):16098–16102. doi: 10.1074/jbc.275.21.16098. [DOI] [PubMed] [Google Scholar]
  9. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  10. Katz B. A. Binding to protein targets of peptidic leads discovered by phage display: crystal structures of streptavidin-bound linear and cyclic peptide ligands containing the HPQ sequence. Biochemistry. 1995 Nov 28;34(47):15421–15429. doi: 10.1021/bi00047a005. [DOI] [PubMed] [Google Scholar]
  11. Kaur K. J., Jain D., Goel M., Salunke D. M. Immunological implications of structural mimicry between a dodecapeptide and a carbohydrate moiety. Vaccine. 2001 Apr 30;19(23-24):3124–3130. doi: 10.1016/s0264-410x(01)00027-5. [DOI] [PubMed] [Google Scholar]
  12. Kaur K. J., Khurana S., Salunke D. M. Topological analysis of the functional mimicry between a peptide and a carbohydrate moiety. J Biol Chem. 1997 Feb 28;272(9):5539–5543. doi: 10.1074/jbc.272.9.5539. [DOI] [PubMed] [Google Scholar]
  13. Keitel T., Kramer A., Wessner H., Scholz C., Schneider-Mergener J., Höhne W. Crystallographic analysis of anti-p24 (HIV-1) monoclonal antibody cross-reactivity and polyspecificity. Cell. 1997 Dec 12;91(6):811–820. doi: 10.1016/s0092-8674(00)80469-9. [DOI] [PubMed] [Google Scholar]
  14. Loris R., Maes D., Poortmans F., Wyns L., Bouckaert J. A structure of the complex between concanavalin A and methyl-3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside reveals two binding modes. J Biol Chem. 1996 Nov 29;271(48):30614–30618. doi: 10.1074/jbc.271.48.30614. [DOI] [PubMed] [Google Scholar]
  15. McEvoy M. M., Hausrath A. C., Randolph G. B., Remington S. J., Dahlquist F. W. Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7333–7338. doi: 10.1073/pnas.95.13.7333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moothoo D. N., Canan B., Field R. A., Naismith J. H. Man alpha1-2 Man alpha-OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition. Glycobiology. 1999 Jun;9(6):539–545. doi: 10.1093/glycob/9.6.539. [DOI] [PubMed] [Google Scholar]
  17. Morton A., Matthews B. W. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. Biochemistry. 1995 Jul 11;34(27):8576–8588. doi: 10.1021/bi00027a007. [DOI] [PubMed] [Google Scholar]
  18. Nagpal S., Gupta V., Kaur K. J., Salunke D. M. Structure-function analysis of tritrypticin, an antibacterial peptide of innate immune origin. J Biol Chem. 1999 Aug 13;274(33):23296–23304. doi: 10.1074/jbc.274.33.23296. [DOI] [PubMed] [Google Scholar]
  19. Naismith J. H., Emmerich C., Habash J., Harrop S. J., Helliwell J. R., Hunter W. N., Raftery J., Kalb A. J., Yariv J. Refined structure of concanavalin A complexed with methyl alpha-D-mannopyranoside at 2.0 A resolution and comparison with the saccharide-free structure. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):847–858. doi: 10.1107/S0907444994005287. [DOI] [PubMed] [Google Scholar]
  20. Naismith J. H., Field R. A. Structural basis of trimannoside recognition by concanavalin A. J Biol Chem. 1996 Jan 12;271(2):972–976. doi: 10.1074/jbc.271.2.972. [DOI] [PubMed] [Google Scholar]
  21. Oldenburg K. R., Loganathan D., Goldstein I. J., Schultz P. G., Gallop M. A. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5393–5397. doi: 10.1073/pnas.89.12.5393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rees B., Webster G., Delarue M., Boeglin M., Moras D. Aspartyl tRNA-synthetase from Escherichia coli: flexibility and adaptability to the substrates. J Mol Biol. 2000 Jun 23;299(5):1157–1164. doi: 10.1006/jmbi.2000.3792. [DOI] [PubMed] [Google Scholar]
  23. Scott J. K., Loganathan D., Easley R. B., Gong X., Goldstein I. J. A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5398–5402. doi: 10.1073/pnas.89.12.5398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sleigh S. H., Seavers P. R., Wilkinson A. J., Ladbury J. E., Tame J. R. Crystallographic and calorimetric analysis of peptide binding to OppA protein. J Mol Biol. 1999 Aug 13;291(2):393–415. doi: 10.1006/jmbi.1999.2929. [DOI] [PubMed] [Google Scholar]
  25. Stanfield R., Cabezas E., Satterthwait A., Stura E., Profy A., Wilson I. Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing fabs. Structure. 1999 Feb 15;7(2):131–142. doi: 10.1016/s0969-2126(99)80020-3. [DOI] [PubMed] [Google Scholar]
  26. Sundberg E. J., Mariuzza R. A. Luxury accommodations: the expanding role of structural plasticity in protein-protein interactions. Structure. 2000 Jul 15;8(7):R137–R142. doi: 10.1016/s0969-2126(00)00167-2. [DOI] [PubMed] [Google Scholar]
  27. Walter J., Trautner T. A., Noyer-Weidner M. High plasticity of multispecific DNA methyltransferases in the region carrying DNA target recognizing enzyme modules. EMBO J. 1992 Dec;11(12):4445–4450. doi: 10.1002/j.1460-2075.1992.tb05545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson I. A., Jolliffe L. K. The structure, organization, activation and plasticity of the erythropoietin receptor. Curr Opin Struct Biol. 1999 Dec;9(6):696–704. doi: 10.1016/s0959-440x(99)00032-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES