Abstract
A spectrally silent transformation in the photolysis of octopus rhodopsin was detected by the time-resolved transient grating method. Our results showed that at least two photointermediates, which share the same chromophore absorption spectrum, exist after the final absorption changes. Previously, mesorhodopsin was thought to decay to the final photoproduct, acid metarhodopsin with a lifetime of 38 micros at 15 degrees C, but the present results show that there is at least one intermediate species (called transient acid metarhodopsin) with a lifetime of 180 micros at 15 degrees C, before forming acid metarhodopsin. This indicates that the parts of the protein distant from the chromophore are still changing even after the changes in microenvironment around the chromophore are over. From the signal intensity detected by the transient grating method, the volume change of the spectrally silent transformation was found to be DeltaV = 13 ml/mol. The activation energy of the spectrally silent transformation is much lower than those of other transformations of octopus rhodopsin. Since stable acid metarhodopsin has not been shown to activate the G protein, this transient acid metarhodopsin may be responsible for G protein activation.
Full Text
The Full Text of this article is available as a PDF (92.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagley K. A., Eisenstein L., Ebrey T. G., Tsuda M. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates. Biochemistry. 1989 Apr 18;28(8):3366–3373. doi: 10.1021/bi00434a036. [DOI] [PubMed] [Google Scholar]
- Cohen G. B., Yang T., Robinson P. R., Oprian D. D. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry. 1993 Jun 15;32(23):6111–6115. doi: 10.1021/bi00074a024. [DOI] [PubMed] [Google Scholar]
- Deng H., Manor D., Weng G., Rath P., Koutalos Y., Ebrey T., Gebhard R., Lugtenburg J., Tsuda M., Callender R. H. A resonance Raman study of octopus bathorhodopsin with deuterium labeled retinal chromophores. Photochem Photobiol. 1991 Dec;54(6):1001–1007. doi: 10.1111/j.1751-1097.1991.tb02122.x. [DOI] [PubMed] [Google Scholar]
- Ernst O. P., Hofmann K. P., Sakmar T. P. Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. Classification of mutant pigments by fluorescence, nucleotide release, and flash-induced light-scattering assays. J Biol Chem. 1995 May 5;270(18):10580–10586. doi: 10.1074/jbc.270.18.10580. [DOI] [PubMed] [Google Scholar]
- Franke R. R., Sakmar T. P., Graham R. M., Khorana H. G. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J Biol Chem. 1992 Jul 25;267(21):14767–14774. [PubMed] [Google Scholar]
- Hashimoto S., Takeuchi H., Nakagawa M., Tsuda M. Ultraviolet resonance Raman evidence for the absence of tyrosinate in octopus rhodopsin and the participation of Trp residues in the transition to acid metarhodopsin. FEBS Lett. 1996 Dec 2;398(2-3):239–242. doi: 10.1016/s0014-5793(96)01250-1. [DOI] [PubMed] [Google Scholar]
- König B., Arendt A., McDowell J. H., Kahlert M., Hargrave P. A., Hofmann K. P. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6878–6882. doi: 10.1073/pnas.86.18.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masuda S., Morita E. H., Tasumi M., Iwasa T., Tsuda M. Infrared studies of octopus rhodopsin. Existence of a long-lived intermediate and the states of the carboxylic group of Asp-81 in rhodopsin and its photoproducts. FEBS Lett. 1993 Feb 15;317(3):223–227. doi: 10.1016/0014-5793(93)81280-d. [DOI] [PubMed] [Google Scholar]
- Nakagawa M., Iwasa T., Kikkawa S., Tsuda M., Ebrey T. G. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6189–6192. doi: 10.1073/pnas.96.11.6189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa M., Kikkawa S., Iwasa T., Tsuda M. Light-induced protein conformational changes in the photolysis of octopus rhodopsin. Biophys J. 1997 May;72(5):2320–2328. doi: 10.1016/S0006-3495(97)78876-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa M., Kikkawa S., Tominaga K., Tsugi N., Tsuda M. A novel photointermediate of octopus rhodopsin activates its G-protein. FEBS Lett. 1998 Oct 2;436(2):259–262. doi: 10.1016/s0014-5793(98)01138-7. [DOI] [PubMed] [Google Scholar]
- Nishimura S., Kandori H., Nakagawa M., Tsuda M., Maeda A. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin. Biochemistry. 1997 Jan 28;36(4):864–870. doi: 10.1021/bi961795i. [DOI] [PubMed] [Google Scholar]
- Ohtani H., Kobayashi T., Tsuda M., Ebrey T. G. Primary processes in photolysis of octopus rhodopsin. Biophys J. 1988 Jan;53(1):17–24. doi: 10.1016/S0006-3495(88)83061-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pande C., Pande A., Yue K. T., Callender R., Ebrey T. G., Tsuda M. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts. Biochemistry. 1987 Aug 11;26(16):4941–4947. doi: 10.1021/bi00390a009. [DOI] [PubMed] [Google Scholar]
- Richard L., Genberg L., Deak J., Chiu H. L., Miller R. J. Picosecond phase grating spectroscopy of hemoglobin and myoglobin: energetics and dynamics of global protein motion. Biochemistry. 1992 Nov 10;31(44):10703–10715. doi: 10.1021/bi00159a010. [DOI] [PubMed] [Google Scholar]
- Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci. 1986;9:87–119. doi: 10.1146/annurev.ne.09.030186.000511. [DOI] [PubMed] [Google Scholar]
- Tsuda M. Transient spectra of intermediates in the photolytic sequence of octopus rhodopsin. Biochim Biophys Acta. 1979 Mar 15;545(3):537–546. doi: 10.1016/0005-2728(79)90162-2. [DOI] [PubMed] [Google Scholar]
- van Brederode M. E., Gensch T., Hoff W. D., Hellingwerf K. J., Braslavsky S. E. Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1995 Mar;68(3):1101–1109. doi: 10.1016/S0006-3495(95)80284-5. [DOI] [PMC free article] [PubMed] [Google Scholar]