Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2935–2945. doi: 10.1016/S0006-3495(01)76259-5

Interaction of CAP18-derived peptides with membranes made from endotoxins or phospholipids.

T Gutsmann 1, S O Hagge 1, J W Larrick 1, U Seydel 1, A Wiese 1
PMCID: PMC1301477  PMID: 11371466

Abstract

Antimicrobial peptides with alpha-helical structures and positive net charges are in the focus of interest with regard to the development of new antibiotic agents, in particular against Gram-negative bacteria. Interaction between seven polycationic alpha-helical CAP18-derived peptides and different types of artificial membranes composed of phosphatidylcholine or lipopolysaccharide of the Gram-negative bacterium Escherichia coli were investigated using different biophysical techniques. Results obtained from fluorescence energy transfer spectroscopy with liposomes, monolayer measurements on a Langmuir trough, and electrophysiological measurements on planar reconstituted asymmetric bilayer membranes including the lipid matrix of the outer membrane of E. coli were correlated, and these data were, furthermore, correlated with structural parameters of the peptides (net charge, alpha-helical content, hydrophobic moment, and hydrophobicity). All peptides induced current fluctuations in planar membranes due to the formation of transient lesions above a peptide- and lipid-specific minimal clamp voltage. Antibacterial activity was exhibited only by those peptides that induced lesion formation in the reconstituted outer membrane at clamp voltages below the transmembrane potential of the natural membrane. Thus, we propose that the physicochemical properties of both the peptides as well as of the target membranes are important for antibacterial activity.

Full Text

The Full Text of this article is available as a PDF (241.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Latorre R. Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys J. 1978 Jan;21(1):1–17. doi: 10.1016/S0006-3495(78)85505-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amano K., Sato T., Fukushi K. Effect of pH on turbidity and ultrastructures of endotoxins extracted from Salmonella minnesota wild type and Re mutant. Microbiol Immunol. 1985;29(1):75–80. doi: 10.1111/j.1348-0421.1985.tb00804.x. [DOI] [PubMed] [Google Scholar]
  3. Bakker E. P., Mangerich W. E. Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. J Bacteriol. 1981 Sep;147(3):820–826. doi: 10.1128/jb.147.3.820-826.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C., Brock R., Luh F., Chou P. J., Larrick J. W., Huang R. F., Huang T. H. The solution structure of the active domain of CAP18--a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett. 1995 Aug 14;370(1-2):46–52. doi: 10.1016/0014-5793(95)00792-8. [DOI] [PubMed] [Google Scholar]
  5. Cowland J. B., Johnsen A. H., Borregaard N. hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett. 1995 Jul 10;368(1):173–176. doi: 10.1016/0014-5793(95)00634-l. [DOI] [PubMed] [Google Scholar]
  6. Dathe M., Schümann M., Wieprecht T., Winkler A., Beyermann M., Krause E., Matsuzaki K., Murase O., Bienert M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 1996 Sep 24;35(38):12612–12622. doi: 10.1021/bi960835f. [DOI] [PubMed] [Google Scholar]
  7. Dathe M., Wieprecht T., Nikolenko H., Handel L., Maloy W. L., MacDonald D. L., Beyermann M., Bienert M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 1997 Feb 17;403(2):208–212. doi: 10.1016/s0014-5793(97)00055-0. [DOI] [PubMed] [Google Scholar]
  8. Dathe M., Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):71–87. doi: 10.1016/s0005-2736(99)00201-1. [DOI] [PubMed] [Google Scholar]
  9. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
  10. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  11. Gutsmann T., Fix M., Larrick J. W., Wiese A. Mechanisms of action of rabbit CAP18 on monolayers and liposomes made from endotoxins or phospholipids. J Membr Biol. 2000 Aug 1;176(3):223–236. doi: 10.1007/s00232001092. [DOI] [PubMed] [Google Scholar]
  12. Gutsmann T., Larrick J. W., Seydel U., Wiese A. Molecular mechanisms of interaction of rabbit CAP18 with outer membranes of gram-negative bacteria. Biochemistry. 1999 Oct 12;38(41):13643–13653. doi: 10.1021/bi990643v. [DOI] [PubMed] [Google Scholar]
  13. Hancock R. E. Alterations in outer membrane permeability. Annu Rev Microbiol. 1984;38:237–264. doi: 10.1146/annurev.mi.38.100184.001321. [DOI] [PubMed] [Google Scholar]
  14. Hancock R. E. Peptide antibiotics. Lancet. 1997 Feb 8;349(9049):418–422. doi: 10.1016/S0140-6736(97)80051-7. [DOI] [PubMed] [Google Scholar]
  15. Hancock R. E., Scott M. G. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8856–8861. doi: 10.1073/pnas.97.16.8856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirata M., Zhong J., Wright S. C., Larrick J. W. Structure and functions of endotoxin-binding peptides derived from CAP18. Prog Clin Biol Res. 1995;392:317–326. [PubMed] [Google Scholar]
  17. Johansson J., Gudmundsson G. H., Rottenberg M. E., Berndt K. D., Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem. 1998 Feb 6;273(6):3718–3724. doi: 10.1074/jbc.273.6.3718. [DOI] [PubMed] [Google Scholar]
  18. Larrick J. W., Hirata M., Shimomoura Y., Yoshida M., Zheng H., Zhong J., Wright S. C. Antimicrobial activity of rabbit CAP18-derived peptides. Antimicrob Agents Chemother. 1993 Dec;37(12):2534–2539. doi: 10.1128/aac.37.12.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Larrick J. W., Hirata M., Zheng H., Zhong J., Bolin D., Cavaillon J. M., Warren H. S., Wright S. C. A novel granulocyte-derived peptide with lipopolysaccharide-neutralizing activity. J Immunol. 1994 Jan 1;152(1):231–240. [PubMed] [Google Scholar]
  20. Lysenko E. S., Gould J., Bals R., Wilson J. M., Weiser J. N. Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun. 2000 Mar;68(3):1664–1671. doi: 10.1128/iai.68.3.1664-1671.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
  22. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):1–10. doi: 10.1016/s0005-2736(99)00197-2. [DOI] [PubMed] [Google Scholar]
  23. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oren Z., Lerman J. C., Gudmundsson G. H., Agerberth B., Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J. 1999 Aug 1;341(Pt 3):501–513. [PMC free article] [PubMed] [Google Scholar]
  25. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47(6):451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  26. Osborn M. J., Gander J. E., Parisi E., Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed] [Google Scholar]
  27. Pathak N., Salas-Auvert R., Ruche G., Janna M. H., McCarthy D., Harrison R. G. Comparison of the effects of hydrophobicity, amphiphilicity, and alpha-helicity on the activities of antimicrobial peptides. Proteins. 1995 Jun;22(2):182–186. doi: 10.1002/prot.340220210. [DOI] [PubMed] [Google Scholar]
  28. Schröder J. M. Epithelial peptide antibiotics. Biochem Pharmacol. 1999 Jan 15;57(2):121–134. doi: 10.1016/s0006-2952(98)00226-3. [DOI] [PubMed] [Google Scholar]
  29. Sen K., Hellman J., Nikaido H. Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J Biol Chem. 1988 Jan 25;263(3):1182–1187. [PubMed] [Google Scholar]
  30. Shaw N. Lipid composition as a guide to the classification of bacteria. Adv Appl Microbiol. 1974;17(0):63–108. doi: 10.1016/s0065-2164(08)70555-0. [DOI] [PubMed] [Google Scholar]
  31. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  32. Stultz C. M., White J. V., Smith T. F. Structural analysis based on state-space modeling. Protein Sci. 1993 Mar;2(3):305–314. doi: 10.1002/pro.5560020302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Travis S. M., Anderson N. N., Forsyth W. R., Espiritu C., Conway B. D., Greenberg E. P., McCray P. B., Jr, Lehrer R. I., Welsh M. J., Tack B. F. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun. 2000 May;68(5):2748–2755. doi: 10.1128/iai.68.5.2748-2755.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Turner J., Cho Y., Dinh N. N., Waring A. J., Lehrer R. I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother. 1998 Sep;42(9):2206–2214. doi: 10.1128/aac.42.9.2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White J. V., Stultz C. M., Smith T. F. Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math Biosci. 1994 Jan;119(1):35–75. doi: 10.1016/0025-5564(94)90004-3. [DOI] [PubMed] [Google Scholar]
  36. Wiese A., Münstermann M., Gutsmann T., Lindner B., Kawahara K., Zähringer U., Seydel U. Molecular mechanisms of polymyxin B-membrane interactions: direct correlation between surface charge density and self-promoted transport. J Membr Biol. 1998 Mar 15;162(2):127–138. doi: 10.1007/s002329900350. [DOI] [PubMed] [Google Scholar]
  37. Wiese A., Seydel U. Electrophysiological measurements on reconstituted outer membranes. Methods Mol Biol. 2000;145:355–370. doi: 10.1385/1-59259-052-7:355. [DOI] [PubMed] [Google Scholar]
  38. Wu M., Maier E., Benz R., Hancock R. E. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999 Jun 1;38(22):7235–7242. doi: 10.1021/bi9826299. [DOI] [PubMed] [Google Scholar]
  39. Zanetti M., Gennaro R., Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995 Oct 23;374(1):1–5. doi: 10.1016/0014-5793(95)01050-o. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES