Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2954–2967. doi: 10.1016/S0006-3495(01)76261-3

Visualization and tracking of single protein molecules in the cell nucleus.

T Kues 1, R Peters 1, U Kubitscheck 1
PMCID: PMC1301479  PMID: 11371468

Abstract

A recently developed laser fluorescence videomicroscopy method was used to determine for the first time the intranuclear trajectories of single protein molecules. Using the recombinant Escherichia coli beta-galactosidase protein P4K, labeled with an average of 4.6 ALEXA 488 chromophores per tetramer, single P4K molecules could be localized and tracked in the nuclei of permeabilized 3T3 cells at a spatial accuracy of approximately 30 nm and a time resolution of 18 ms. Our previous photobleaching measurements indicated that P4K had two fractions inside the nucleus, a larger mobile and a smaller immobile fraction. The present study supported this observation but revealed a much larger variety of mobility classes. Thus, a fraction of P4K molecules appeared to be truly immobile while another fraction was mobile but confined to very small areas. In addition, a large fraction of the P4K molecules appeared to be mobile and to move over extended distances by diffusion. However, a quantitative analysis showed that at least two subpopulations were present differing widely in diffusion coefficients. Importantly, both the diffusion coefficients and the fractions of these subpopulations were time-dependent. Our results suggest that proteins can move inside the nucleus over extended distances by diffusion. However, intranuclear protein diffusion is severely restricted, most likely by multiple association-dissociation events and/or impermeable obstacles.

Full Text

The Full Text of this article is available as a PDF (488.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abney J. R., Cutler B., Fillbach M. L., Axelrod D., Scalettar B. A. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol. 1997 Jun 30;137(7):1459–1468. doi: 10.1083/jcb.137.7.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adam S. A., Marr R. S., Gerace L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol. 1990 Sep;111(3):807–816. doi: 10.1083/jcb.111.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson C. M., Georgiou G. N., Morrison I. E., Stevenson G. V., Cherry R. J. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci. 1992 Feb;101(Pt 2):415–425. doi: 10.1242/jcs.101.2.415. [DOI] [PubMed] [Google Scholar]
  4. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchenau P., Saumweber H., Arndt-Jovin D. J. The dynamic nuclear redistribution of an hnRNP K-homologous protein during Drosophila embryo development and heat shock. Flexibility of transcription sites in vivo. J Cell Biol. 1997 Apr 21;137(2):291–303. doi: 10.1083/jcb.137.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cherry R. J. How to detect nonrandom motion of proteins in membranes. Biophys J. 1993 Jun;64(6):1651–1652. doi: 10.1016/S0006-3495(93)81535-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daneholt B. Pre-mRNP particles: From gene to nuclear pore. Curr Biol. 1999 Jun 3;9(11):R412–R415. doi: 10.1016/s0960-9822(99)80256-5. [DOI] [PubMed] [Google Scholar]
  8. Dietzel S., Jauch A., Kienle D., Qu G., Holtgreve-Grez H., Eils R., Münkel C., Bittner M., Meltzer P. S., Trent J. M. Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res. 1998 Jan;6(1):25–33. doi: 10.1023/a:1009262223693. [DOI] [PubMed] [Google Scholar]
  9. Edidin M., Zagyansky Y., Lardner T. J. Measurement of membrane protein lateral diffusion in single cells. Science. 1976 Feb 6;191(4226):466–468. doi: 10.1126/science.1246629. [DOI] [PubMed] [Google Scholar]
  10. Feder T. J., Brust-Mascher I., Slattery J. P., Baird B., Webb W. W. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J. 1996 Jun;70(6):2767–2773. doi: 10.1016/S0006-3495(96)79846-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobson K., Derzko Z., Wu E. S., Hou Y., Poste G. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J Supramol Struct. 1976;5(4):565(417)–576(428). doi: 10.1002/jss.400050411. [DOI] [PubMed] [Google Scholar]
  12. Jacobson R. H., Zhang X. J., DuBose R. F., Matthews B. W. Three-dimensional structure of beta-galactosidase from E. coli. Nature. 1994 Jun 30;369(6483):761–766. doi: 10.1038/369761a0. [DOI] [PubMed] [Google Scholar]
  13. Kubitscheck U., Kues T., Peters R. Visualization of nuclear pore complex and its distribution by confocal laser scanning microscopy. Methods Enzymol. 1999;307:207–230. doi: 10.1016/s0076-6879(99)07015-9. [DOI] [PubMed] [Google Scholar]
  14. Kubitscheck U., Kückmann O., Kues T., Peters R. Imaging and tracking of single GFP molecules in solution. Biophys J. 2000 Apr;78(4):2170–2179. doi: 10.1016/S0006-3495(00)76764-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kubitscheck U., Wedekind P., Zeidler O., Grote M., Peters R. Single nuclear pores visualized by confocal microscopy and image processing. Biophys J. 1996 May;70(5):2067–2077. doi: 10.1016/S0006-3495(96)79811-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lamond A. I., Earnshaw W. C. Structure and function in the nucleus. Science. 1998 Apr 24;280(5363):547–553. doi: 10.1126/science.280.5363.547. [DOI] [PubMed] [Google Scholar]
  17. Lang I., Scholz M., Peters R. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J Cell Biol. 1986 Apr;102(4):1183–1190. doi: 10.1083/jcb.102.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manuelidis L. A view of interphase chromosomes. Science. 1990 Dec 14;250(4987):1533–1540. doi: 10.1126/science.2274784. [DOI] [PubMed] [Google Scholar]
  19. Marshall W. F., Straight A., Marko J. F., Swedlow J., Dernburg A., Belmont A., Murray A. W., Agard D. A., Sedat J. W. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol. 1997 Dec 1;7(12):930–939. doi: 10.1016/s0960-9822(06)00412-x. [DOI] [PubMed] [Google Scholar]
  20. Mattaj I. W., Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem. 1998;67:265–306. doi: 10.1146/annurev.biochem.67.1.265. [DOI] [PubMed] [Google Scholar]
  21. Mehta A. D., Rief M., Spudich J. A., Smith D. A., Simmons R. M. Single-molecule biomechanics with optical methods. Science. 1999 Mar 12;283(5408):1689–1695. doi: 10.1126/science.283.5408.1689. [DOI] [PubMed] [Google Scholar]
  22. Meseth U., Wohland T., Rigler R., Vogel H. Resolution of fluorescence correlation measurements. Biophys J. 1999 Mar;76(3):1619–1631. doi: 10.1016/S0006-3495(99)77321-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Newmeyer D. D., Wilson K. L. Egg extracts for nuclear import and nuclear assembly reactions. Methods Cell Biol. 1991;36:607–634. doi: 10.1016/s0091-679x(08)60299-x. [DOI] [PubMed] [Google Scholar]
  24. Nie S., Zare R. N. Optical detection of single molecules. Annu Rev Biophys Biomol Struct. 1997;26:567–596. doi: 10.1146/annurev.biophys.26.1.567. [DOI] [PubMed] [Google Scholar]
  25. Pederson T. Diffusional protein transport within the nucleus: a message in the medium. Nat Cell Biol. 2000 May;2(5):E73–E74. doi: 10.1038/35010501. [DOI] [PubMed] [Google Scholar]
  26. Peters R. Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta. 1986 Dec 22;864(3-4):305–359. doi: 10.1016/0304-4157(86)90003-1. [DOI] [PubMed] [Google Scholar]
  27. Peters R., Peters J., Tews K. H., Bähr W. A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):282–294. doi: 10.1016/0005-2736(74)90085-6. [DOI] [PubMed] [Google Scholar]
  28. Phair R. D., Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature. 2000 Apr 6;404(6778):604–609. doi: 10.1038/35007077. [DOI] [PubMed] [Google Scholar]
  29. Politz J. C., Browne E. S., Wolf D. E., Pederson T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6043–6048. doi: 10.1073/pnas.95.11.6043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rihs H. P., Jans D. A., Fan H., Peters R. The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen. EMBO J. 1991 Mar;10(3):633–639. doi: 10.1002/j.1460-2075.1991.tb07991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rihs H. P., Peters R. Nuclear transport kinetics depend on phosphorylation-site-containing sequences flanking the karyophilic signal of the Simian virus 40 T-antigen. EMBO J. 1989 May;8(5):1479–1484. doi: 10.1002/j.1460-2075.1989.tb03531.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  33. Saxton M. J. Single-particle tracking: the distribution of diffusion coefficients. Biophys J. 1997 Apr;72(4):1744–1753. doi: 10.1016/S0006-3495(97)78820-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schmidt T., Schütz G. J., Baumgartner W., Gruber H. J., Schindler H. Imaging of single molecule diffusion. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2926–2929. doi: 10.1073/pnas.93.7.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schulz B., Peters R. Nucleocytoplasmic protein traffic in single mammalian cells studied by fluorescence microphotolysis. Biochim Biophys Acta. 1987 Oct 1;930(3):419–431. doi: 10.1016/0167-4889(87)90015-2. [DOI] [PubMed] [Google Scholar]
  36. Seksek O., Biwersi J., Verkman A. S. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997 Jul 14;138(1):131–142. doi: 10.1083/jcb.138.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shelby R. D., Hahn K. M., Sullivan K. F. Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Cell Biol. 1996 Nov;135(3):545–557. doi: 10.1083/jcb.135.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith P. R., Morrison I. E., Wilson K. M., Fernández N., Cherry R. J. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J. 1999 Jun;76(6):3331–3344. doi: 10.1016/S0006-3495(99)77486-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wedekind P., Kubitscheck U., Heinrich O., Peters R. Line-scanning microphotolysis for diffraction-limited measurements of lateral diffusion. Biophys J. 1996 Sep;71(3):1621–1632. doi: 10.1016/S0006-3495(96)79366-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wedekind P., Kubitscheck U., Peters R. Scanning microphotolysis: a new photobleaching technique based on fast intensity modulation of a scanned laser beam and confocal imaging. J Microsc. 1994 Oct;176(Pt 1):23–33. doi: 10.1111/j.1365-2818.1994.tb03496.x. [DOI] [PubMed] [Google Scholar]
  41. Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999 Mar 12;283(5408):1676–1683. doi: 10.1126/science.283.5408.1676. [DOI] [PubMed] [Google Scholar]
  42. Wilson K. M., Morrison I. E., Smith P. R., Fernandez N., Cherry R. J. Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J Cell Sci. 1996 Aug;109(Pt 8):2101–2109. doi: 10.1242/jcs.109.8.2101. [DOI] [PubMed] [Google Scholar]
  43. Xie X. S., Trautman J. K. Optical studies of single molecules at room temperature. Annu Rev Phys Chem. 1998;49:441–480. doi: 10.1146/annurev.physchem.49.1.441. [DOI] [PubMed] [Google Scholar]
  44. Zhao K., Hart C. M., Laemmli U. K. Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell. 1995 Jun 16;81(6):879–889. doi: 10.1016/0092-8674(95)90008-x. [DOI] [PubMed] [Google Scholar]
  45. Zink D., Cremer T. Cell nucleus: chromosome dynamics in nuclei of living cells. Curr Biol. 1998 Apr 23;8(9):R321–R324. doi: 10.1016/s0960-9822(98)00198-5. [DOI] [PubMed] [Google Scholar]
  46. Zink D., Cremer T., Saffrich R., Fischer R., Trendelenburg M. F., Ansorge W., Stelzer E. H. Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet. 1998 Feb;102(2):241–251. doi: 10.1007/s004390050686. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES