Abstract
Fluorescence anisotropy decay microscopy was used to determine, in individual living cells, the spatial monomer-dimer distribution of proteins, as exemplified by herpes simplex virus thymidine kinase (TK) fused to green fluorescent protein (GFP). Accordingly, the fluorescence anisotropy dynamics of two fusion proteins (TK27GFP and TK366GFP) was recorded in the confocal mode by ultra-sensitive time-correlated single-photon counting. This provided a measurement of the rotational time of these proteins, which, by comparing with GFP, allowed the determination of their oligomeric state in both the cytoplasm and the nucleus. It also revealed energy homo-transfer within aggregates that TK366GFP progressively formed. Using a symmetric dimer model, structural parameters were estimated; the mutual orientation of the transition dipoles of the two GFP chromophores, calculated from the residual anisotropy, was 44.6 +/- 1.6 degrees, and the upper intermolecular limit between the two fluorescent tags, calculated from the energy transfer rate, was 70 A. Acquisition of the fluorescence steady-state intensity, lifetime, and anisotropy decay in the same cells, at different times after transfection, indicated that TK366GFP was initially in a monomeric state and then formed dimers that grew into aggregates. Picosecond time-resolved fluorescence anisotropy microscopy opens a promising avenue for obtaining structural information on proteins in individual living cells, even when expression levels are very low.
Full Text
The Full Text of this article is available as a PDF (163.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J. 1979 Jun;26(3):557–573. doi: 10.1016/S0006-3495(79)85271-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Axelrod D. Fluorescence polarization microscopy. Methods Cell Biol. 1989;30:333–352. [PubMed] [Google Scholar]
- Bastiaens P. I., Squire A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 1999 Feb;9(2):48–52. doi: 10.1016/s0962-8924(98)01410-x. [DOI] [PubMed] [Google Scholar]
- Bastiaens P. I., van Hoek A., Benen J. A., Brochon J. C., Visser A. J. Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study. Biophys J. 1992 Sep;63(3):839–853. doi: 10.1016/S0006-3495(92)81659-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergström F., Hägglöf P., Karolin J., Ny T., Johansson L. B. The use of site-directed fluorophore labeling and donor-donor energy migration to investigate solution structure and dynamics in proteins. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12477–12481. doi: 10.1073/pnas.96.22.12477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackman S. M., Piston D. W., Beth A. H. Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer. Biophys J. 1998 Aug;75(2):1117–1130. doi: 10.1016/S0006-3495(98)77601-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattoraj M., King B. A., Bublitz G. U., Boxer S. G. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8362–8367. doi: 10.1073/pnas.93.16.8362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coppey-Moisan M., Delic J., Magdelenat H., Coppey J. Principle of digital imaging microscopy. Methods Mol Biol. 1994;33:359–393. doi: 10.1385/0-89603-280-9:359. [DOI] [PubMed] [Google Scholar]
- Creemers T. M., Lock A. J., Subramaniam V., Jovin T. M., Völker S. Photophysics and optical switching in green fluorescent protein mutants. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):2974–2978. doi: 10.1073/pnas.050365997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emmanouilidou E., Teschemacher A. G., Pouli A. E., Nicholls L. I., Seward E. P., Rutter G. A. Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr Biol. 1999 Aug 26;9(16):915–918. doi: 10.1016/s0960-9822(99)80398-4. [DOI] [PubMed] [Google Scholar]
- Fetzer J., Michael M., Bohner T., Hofbauer R., Folkers G. A fast method for obtaining highly pure recombinant herpes simplex virus type 1 thymidine kinase. Protein Expr Purif. 1994 Oct;5(5):432–441. doi: 10.1006/prep.1994.1062. [DOI] [PubMed] [Google Scholar]
- Hink M. A., Griep R. A., Borst J. W., van Hoek A., Eppink M. H., Schots A., Visser A. J. Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein. J Biol Chem. 2000 Jun 9;275(23):17556–17560. doi: 10.1074/jbc.M001348200. [DOI] [PubMed] [Google Scholar]
- Llopis J., Westin S., Ricote M., Wang Z., Cho C. Y., Kurokawa R., Mullen T. M., Rose D. W., Rosenfeld M. G., Tsien R. Y. Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4363–4368. doi: 10.1073/pnas.97.8.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahajan N. P., Linder K., Berry G., Gordon G. W., Heim R., Herman B. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol. 1998 Jun;16(6):547–552. doi: 10.1038/nbt0698-547. [DOI] [PubMed] [Google Scholar]
- Nagai Y., Miyazaki M., Aoki R., Zama T., Inouye S., Hirose K., Iino M., Hagiwara M. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol. 2000 Mar;18(3):313–316. doi: 10.1038/73767. [DOI] [PubMed] [Google Scholar]
- Ng T., Squire A., Hansra G., Bornancin F., Prevostel C., Hanby A., Harris W., Barnes D., Schmidt S., Mellor H. Imaging protein kinase Calpha activation in cells. Science. 1999 Mar 26;283(5410):2085–2089. doi: 10.1126/science.283.5410.2085. [DOI] [PubMed] [Google Scholar]
- Pepperkok R., Squire A., Geley S., Bastiaens P. I. Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol. 1999 Mar 11;9(5):269–272. doi: 10.1016/s0960-9822(99)80117-1. [DOI] [PubMed] [Google Scholar]
- Runnels L. W., Scarlata S. F. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J. 1995 Oct;69(4):1569–1583. doi: 10.1016/S0006-3495(95)80030-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
- Swaminathan R., Hoang C. P., Verkman A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J. 1997 Apr;72(4):1900–1907. doi: 10.1016/S0006-3495(97)78835-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tramier M., Kemnitz K., Durieux C., Coppey J., Denjean P., Pansu R. B., Coppey-Moisan M. Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells. Biophys J. 2000 May;78(5):2614–2627. doi: 10.1016/S0006-3495(00)76806-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderklish P. W., Krushel L. A., Holst B. H., Gally J. A., Crossin K. L., Edelman G. M. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2253–2258. doi: 10.1073/pnas.040565597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998 Aug 20;394(6695):798–801. doi: 10.1038/29563. [DOI] [PubMed] [Google Scholar]
- Volkmer A., Subramaniam V., Birch D. J., Jovin T. M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys J. 2000 Mar;78(3):1589–1598. doi: 10.1016/S0006-3495(00)76711-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldman A. S., Haeusslein E., Milman G. Purification and characterization of herpes simplex virus (type 1) thymidine kinase produced in Escherichia coli by a high efficiency expression plasmid utilizing a lambda PL promoter and cI857 temperature-sensitive repressor. J Biol Chem. 1983 Oct 10;258(19):11571–11575. [PubMed] [Google Scholar]
- Waldo G. S., Standish B. M., Berendzen J., Terwilliger T. C. Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol. 1999 Jul;17(7):691–695. doi: 10.1038/10904. [DOI] [PubMed] [Google Scholar]
- Wilczynska M., Fa M., Karolin J., Ohlsson P. I., Johansson L. B., Ny T. Structural insights into serpin-protease complexes reveal the inhibitory mechanism of serpins. Nat Struct Biol. 1997 May;4(5):354–357. doi: 10.1038/nsb0597-354. [DOI] [PubMed] [Google Scholar]
- Wild K., Bohner T., Folkers G., Schulz G. E. The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci. 1997 Oct;6(10):2097–2106. doi: 10.1002/pro.5560061005. [DOI] [PMC free article] [PubMed] [Google Scholar]