Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):3019–3024. doi: 10.1016/S0006-3495(01)76267-4

Femtosecond dynamics of intracellular water probed with nonlinear optical Kerr effect microspectroscopy.

E O Potma 1, W P de Boeij 1, D A Wiersma 1
PMCID: PMC1301485  PMID: 11371474

Abstract

A nonlinear optical Kerr effect (OKE) microscope was developed and used to elucidate the ultra-fast diffusive motions of intracellular water molecules. In the OKE microscope, a pump-induced birefringence is sensed by a delayed probe pulse within a spatially confined volume that measures 0.5 microm in the lateral direction and 4.0 microm along the axial coordinate. This microscope allows the recording of time-resolved Kerr signals, which reflect the ultra-fast structural relaxation of the liquid, exclusively from intracellular aqueous domains. Because relaxation occurs on a picosecond time scale, only local diffusive motions are probed. The microscopic OKE signal is therefore insensitive to long-time-scale hindered translational motions enforced by intracellular mechanical barriers but probes the intrinsic orientational mobility of water molecules in cells instead. The Kerr response as determined from single intact mammalian cells under physiological conditions shows a structural relaxation time of 1.35 ps, which is 1.7 times slower than the Kerr decay observed in pure water. The data indicate that the mobility of water molecules in cellular domains is moderately restricted due to the high intracellular content of proteins and solutes.

Full Text

The Full Text of this article is available as a PDF (98.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cameron I. L., Kanal K. M., Keener C. R., Fullerton G. D. A mechanistic view of the non-ideal osmotic and motional behavior of intracellular water. Cell Biol Int. 1997 Feb;21(2):99–113. doi: 10.1006/cbir.1996.0123. [DOI] [PubMed] [Google Scholar]
  2. Clegg J. S. Intracellular water and the cytomatrix: some methods of study and current views. J Cell Biol. 1984 Jul;99(1 Pt 2):167s–171s. doi: 10.1083/jcb.99.1.167s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Denisov V. P., Halle B. Protein hydration dynamics in aqueous solution. Faraday Discuss. 1996;(103):227–244. doi: 10.1039/fd9960300227. [DOI] [PubMed] [Google Scholar]
  4. Dix J. A., Verkman A. S. Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity. Biophys J. 1990 Feb;57(2):231–240. doi: 10.1016/S0006-3495(90)82526-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fushimi K., Verkman A. S. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol. 1991 Feb;112(4):719–725. doi: 10.1083/jcb.112.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. García A. E., Hummer G. Water penetration and escape in proteins. Proteins. 2000 Feb 15;38(3):261–272. [PubMed] [Google Scholar]
  7. Keith A. D., Snipes W., Mehlhorn R. J., Gunter T. Factors restricting diffusion of water-soluble spin labels. Biophys J. 1977 Sep;19(3):205–218. doi: 10.1016/S0006-3495(77)85582-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lepock J. R., Cheng K. H., Campbell S. D., Kruuv J. Rotational diffusion of TEMPONE in the cytoplasm of Chinese hamster lung cells. Biophys J. 1983 Dec;44(3):405–412. doi: 10.1016/S0006-3495(83)84314-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luby-Phelps K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol. 2000;192:189–221. doi: 10.1016/s0074-7696(08)60527-6. [DOI] [PubMed] [Google Scholar]
  10. Mastro A. M., Keith A. D. Diffusion in the aqueous compartment. J Cell Biol. 1984 Jul;99(1 Pt 2):180s–187s. doi: 10.1083/jcb.99.1.180s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Porter K. R. The cytomatrix: a short history of its study. J Cell Biol. 1984 Jul;99(1 Pt 2):3s–12s. doi: 10.1083/jcb.99.1.3s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Potma E. O., de Boeij W. P., Pshenichnikov M. S., Wiersma D. A. 30-fs, cavity-dumped optical parametric oscillator. Opt Lett. 1998 Nov 15;23(22):1763–1765. doi: 10.1364/ol.23.001763. [DOI] [PubMed] [Google Scholar]
  13. Rupley J. A., Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172. doi: 10.1016/s0065-3233(08)60197-7. [DOI] [PubMed] [Google Scholar]
  14. Trantham E. C., Rorschach H. E., Clegg J. S., Hazlewood C. F., Nicklow R. M., Wakabayashi N. Diffusive properties of water in Artemia cysts as determined from quasi-elastic neutron scattering spectra. Biophys J. 1984 May;45(5):927–938. doi: 10.1016/S0006-3495(84)84239-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES