Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):11–24. doi: 10.1016/S0006-3495(01)75676-7

Simulation of motor-driven cochlear outer hair cell electromotility.

A A Spector 1, M Ameen 1, A S Popel 1
PMCID: PMC1301488  PMID: 11423391

Abstract

We propose a three-dimensional (3D) model to simulate outer hair cell electromotility. In our model, the major components of the composite cell wall are explicitly represented. We simulate the activity of the particles/motor complexes in the plasma membrane by generating active strains inside them and compute the overall response of the cell. We also consider the constrained wall and compute the generated active force. We estimate the parameters of our model by matching the predicted longitudinal and circumferential electromotile strains with those observed in the microchamber experiment. In addition, we match the earlier estimated values of the active force and cell wall stiffness. The computed electromotile strains in the plasma membrane and other components of the wall are in agreement with experimental observations in trypsinized cells and in nonmotile cells transfected with Prestin. We discover several features of the 3D mechanism of outer hair cell electromotilty. Because of the constraints under which the motors operate, the motor-related strains have to be 2-3 times larger than the observable strains. The motor density has a strong effect on the electromotile strain. Such effect on the active force is significantly lower because of the interplay between the active and passive properties of the cell wall.

Full Text

The Full Text of this article is available as a PDF (173.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi M., Iwasa K. H. Electrically driven motor in the outer hair cell: effect of a mechanical constraint. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7244–7249. doi: 10.1073/pnas.96.13.7244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashmore J. F. Forward and reverse transduction in the mammalian cochlea. Neurosci Res Suppl. 1990;12:S39–S50. doi: 10.1016/0921-8696(90)90007-p. [DOI] [PubMed] [Google Scholar]
  3. Belyantseva I. A., Adler H. J., Curi R., Frolenkov G. I., Kachar B. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci. 2000 Dec 15;20(24):RC116–RC116. doi: 10.1523/JNEUROSCI.20-24-j0002.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brownell W. E., Bader C. R., Bertrand D., de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985 Jan 11;227(4683):194–196. doi: 10.1126/science.3966153. [DOI] [PubMed] [Google Scholar]
  5. Dallos P., Hallworth R., Evans B. N. Theory of electrically driven shape changes of cochlear outer hair cells. J Neurophysiol. 1993 Jul;70(1):299–323. doi: 10.1152/jn.1993.70.1.299. [DOI] [PubMed] [Google Scholar]
  6. Evans B. N., Dallos P. Stereocilia displacement induced somatic motility of cochlear outer hair cells. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8347–8351. doi: 10.1073/pnas.90.18.8347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forge A. Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res. 1991 Sep;265(3):473–483. doi: 10.1007/BF00340870. [DOI] [PubMed] [Google Scholar]
  8. Frank G., Hemmert W., Gummer A. W. Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4420–4425. doi: 10.1073/pnas.96.8.4420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gale J. E., Ashmore J. F. The outer hair cell motor in membrane patches. Pflugers Arch. 1997 Jul;434(3):267–271. doi: 10.1007/s004240050395. [DOI] [PubMed] [Google Scholar]
  10. Géléoc G. S., Casalotti S. O., Forge A., Ashmore J. F. A sugar transporter as a candidate for the outer hair cell motor. Nat Neurosci. 1999 Aug;2(8):713–719. doi: 10.1038/11174. [DOI] [PubMed] [Google Scholar]
  11. Hallworth R., Evans B. N., Dallos P. The location and mechanism of electromotility in guinea pig outer hair cells. J Neurophysiol. 1993 Aug;70(2):549–558. doi: 10.1152/jn.1993.70.2.549. [DOI] [PubMed] [Google Scholar]
  12. Holley M. C., Kalinec F., Kachar B. Structure of the cortical cytoskeleton in mammalian outer hair cells. J Cell Sci. 1992 Jul;102(Pt 3):569–580. doi: 10.1242/jcs.102.3.569. [DOI] [PubMed] [Google Scholar]
  13. Huang G., Santos-Sacchi J. Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12268–12272. doi: 10.1073/pnas.91.25.12268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwasa K. H. A membrane motor model for the fast motility of the outer hair cell. J Acoust Soc Am. 1994 Oct;96(4):2216–2224. doi: 10.1121/1.410094. [DOI] [PubMed] [Google Scholar]
  15. Jen D. H., Steele C. R. Electrokinetic model of cochlear hair cell motility. J Acoust Soc Am. 1987 Nov;82(5):1667–1678. doi: 10.1121/1.395158. [DOI] [PubMed] [Google Scholar]
  16. Kalinec F., Holley M. C., Iwasa K. H., Lim D. J., Kachar B. A membrane-based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8671–8675. doi: 10.1073/pnas.89.18.8671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim K. S., Neu J., Oster G. Curvature-mediated interactions between membrane proteins. Biophys J. 1998 Nov;75(5):2274–2291. doi: 10.1016/S0006-3495(98)77672-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ludwig J., Oliver D., Frank G., Klöcker N., Gummer A. W., Fakler B. Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4178–4183. doi: 10.1073/pnas.071613498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mammano F., Ashmore J. F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature. 1993 Oct 28;365(6449):838–841. doi: 10.1038/365838a0. [DOI] [PubMed] [Google Scholar]
  20. Morris C. E. Mechanosensitive ion channels. J Membr Biol. 1990 Feb;113(2):93–107. doi: 10.1007/BF01872883. [DOI] [PubMed] [Google Scholar]
  21. Oghalai J. S., Zhao H. B., Kutz J. W., Brownell W. E. Voltage- and tension-dependent lipid mobility in the outer hair cell plasma membrane. Science. 2000 Jan 28;287(5453):658–661. doi: 10.1126/science.287.5453.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raphael R. M., Popel A. S., Brownell W. E. A membrane bending model of outer hair cell electromotility. Biophys J. 2000 Jun;78(6):2844–2862. doi: 10.1016/S0006-3495(00)76827-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ruggero M. A., Rich N. C. Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci. 1991 Apr;11(4):1057–1067. doi: 10.1523/JNEUROSCI.11-04-01057.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saito K. Fine structure of the sensory epithelium of guinea-pig organ of Corti: subsurface cisternae and lamellar bodies in the outer hair cells. Cell Tissue Res. 1983;229(3):467–481. doi: 10.1007/BF00207692. [DOI] [PubMed] [Google Scholar]
  25. Santos-Sacchi J., Dilger J. P. Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res. 1988 Sep 15;35(2-3):143–150. doi: 10.1016/0378-5955(88)90113-x. [DOI] [PubMed] [Google Scholar]
  26. Santos-Sacchi J., Kakehata S., Kikuchi T., Katori Y., Takasaka T. Density of motility-related charge in the outer hair cell of the guinea pig is inversely related to best frequency. Neurosci Lett. 1998 Nov 13;256(3):155–158. doi: 10.1016/s0304-3940(98)00788-5. [DOI] [PubMed] [Google Scholar]
  27. Spector A. A., Brownell W. E., Popel A. S. Elastic properties of the composite outer hair cell wall. Ann Biomed Eng. 1998 Jan-Feb;26(1):157–165. doi: 10.1114/1.87. [DOI] [PubMed] [Google Scholar]
  28. Spector A. A., Brownell W. E., Popel A. S. Estimation of elastic moduli and bending stiffness of the anisotropic outer hair cell wall. J Acoust Soc Am. 1998 Feb;103(2):1007–1011. doi: 10.1121/1.421217. [DOI] [PubMed] [Google Scholar]
  29. Spector A. A., Brownell W. E., Popel A. S. Nonlinear active force generation by cochlear outer hair cell. J Acoust Soc Am. 1999 Apr;105(4):2414–2420. doi: 10.1121/1.426846. [DOI] [PubMed] [Google Scholar]
  30. Sukharev S., Betanzos M., Chiang C. S., Guy H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature. 2001 Feb 8;409(6821):720–724. doi: 10.1038/35055559. [DOI] [PubMed] [Google Scholar]
  31. Tolomeo J. A., Steele C. R. A dynamic model of outer hair cell motility including intracellular and extracellular fluid viscosity. J Acoust Soc Am. 1998 Jan;103(1):524–534. doi: 10.1121/1.421126. [DOI] [PubMed] [Google Scholar]
  32. Tolomeo J. A., Steele C. R., Holley M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophys J. 1996 Jul;71(1):421–429. doi: 10.1016/S0006-3495(96)79244-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
  34. Wang D. N., Sarabia V. E., Reithmeier R. A., Kühlbrandt W. Three-dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. EMBO J. 1994 Jul 15;13(14):3230–3235. doi: 10.1002/j.1460-2075.1994.tb06624.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zheng J., Shen W., He D. Z., Long K. B., Madison L. D., Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature. 2000 May 11;405(6783):149–155. doi: 10.1038/35012009. [DOI] [PubMed] [Google Scholar]
  36. Zhuang J., Privé G. G., Werner G. E., Ringler P., Kaback H. R., Engel A. Two-dimensional crystallization of Escherichia coli lactose permease. J Struct Biol. 1999 Mar;125(1):63–75. doi: 10.1006/jsbi.1998.4059. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES