Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):57–65. doi: 10.1016/S0006-3495(01)75679-2

Membrane-initiated Ca(2+) signals are reshaped during propagation to subcellular regions.

W J Koopman 1, W J Scheenen 1, R J Errington 1, P H Willems 1, R J Bindels 1, E W Roubos 1, B G Jenks 1
PMCID: PMC1301491  PMID: 11423394

Abstract

An important aspect of Ca(2+) signaling is the ability of cells to generate intracellular Ca(2+) waves. In this study we have analyzed the cellular and subcellular kinetics of Ca(2+) waves in a neuroendocrine transducer cell, the melanotrope of Xenopus laevis, using the ratiometric Ca(2+) probe indo-1 and video-rate UV confocal laser-scanning microscopy. The purpose of the present study was to investigate how local Ca(2+) changes contribute to a global Ca(2+) signal; subsequently we quantified how a Ca(2+) wave is kinetically reshaped as it is propagated through the cell. The combined kinetics of all subcellular Ca(2+) signals determined the shape of the total cellular Ca(2+) signal, but each subcellular contribution to the cellular signal was not constant in time. Near the plasma membrane, [Ca(2+)](i) increased and decreased rapidly, processes that can be described by a linear and exponential function, respectively. In more central parts of the cell slower kinetics were observed that were best described by a Hill equation. This reshaping of the Ca(2+) wave was modeled with an equation derived from a low-pass RC filter. We propose that the differences in spatial kinetics of the Ca(2+) signal serves as a mechanism by which the same cellular Ca(2+) signal carries different regulatory information to different subcellular regions of the cell, thus evoking differential cellular responses.

Full Text

The Full Text of this article is available as a PDF (743.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. The AM and FM of calcium signalling. Nature. 1997 Apr 24;386(6627):759–760. doi: 10.1038/386759a0. [DOI] [PubMed] [Google Scholar]
  2. Bito H., Deisseroth K., Tsien R. W. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell. 1996 Dec 27;87(7):1203–1214. doi: 10.1016/s0092-8674(00)81816-4. [DOI] [PubMed] [Google Scholar]
  3. Bootman M. D., Berridge M. J., Lipp P. Cooking with calcium: the recipes for composing global signals from elementary events. Cell. 1997 Oct 31;91(3):367–373. doi: 10.1016/s0092-8674(00)80420-1. [DOI] [PubMed] [Google Scholar]
  4. Bootman M. D., Berridge M. J. The elemental principles of calcium signaling. Cell. 1995 Dec 1;83(5):675–678. doi: 10.1016/0092-8674(95)90179-5. [DOI] [PubMed] [Google Scholar]
  5. Burgoyne R. D., Morgan A. Calcium sensors in regulated exocytosis. Cell Calcium. 1998 Nov-Dec;24(5-6):367–376. doi: 10.1016/s0143-4160(98)90060-4. [DOI] [PubMed] [Google Scholar]
  6. Chin D., Means A. R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000 Aug;10(8):322–328. doi: 10.1016/s0962-8924(00)01800-6. [DOI] [PubMed] [Google Scholar]
  7. Deisseroth K., Heist E. K., Tsien R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature. 1998 Mar 12;392(6672):198–202. doi: 10.1038/32448. [DOI] [PubMed] [Google Scholar]
  8. Dolmetsch R. E., Xu K., Lewis R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998 Apr 30;392(6679):933–936. doi: 10.1038/31960. [DOI] [PubMed] [Google Scholar]
  9. Dotman C. H., Maia A., Jenks B. G., Roubos E. W. Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary. Neuroendocrinology. 1997 Aug;66(2):106–113. doi: 10.1159/000127226. [DOI] [PubMed] [Google Scholar]
  10. Douglas W. W., Shibuya I. Calcium signals in melanotrophs and their relation to autonomous secretion and its modification by inhibitory and stimulatory ligands. Ann N Y Acad Sci. 1993 May 31;680:229–245. doi: 10.1111/j.1749-6632.1993.tb19687.x. [DOI] [PubMed] [Google Scholar]
  11. Finch E. A., Augustine G. J. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 1998 Dec 24;396(6713):753–756. doi: 10.1038/25541. [DOI] [PubMed] [Google Scholar]
  12. Ince C., van Dissel J. T., Diesselhoff M. M. A teflon culture dish for high-magnification microscopy and measurements in single cells. Pflugers Arch. 1985 Mar;403(3):240–244. doi: 10.1007/BF00583594. [DOI] [PubMed] [Google Scholar]
  13. Kasai H. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci. 1999 Feb;22(2):88–93. doi: 10.1016/s0166-2236(98)01293-4. [DOI] [PubMed] [Google Scholar]
  14. Koopman W. J., Hink M. A., Visser A. J., Roubos E. W., Jenks B. G. Evidence that Ca2+-waves in Xenopus melanotropes depend on calcium-induced calcium release: a fluorescence correlation microscopy and linescanning study. Cell Calcium. 1999 Jul-Aug;26(1-2):59–67. doi: 10.1054/ceca.1999.0051. [DOI] [PubMed] [Google Scholar]
  15. Koopman W. J., Scheenen W. J., Roubos E. W., Jenks B. G. Kinetics of calcium steps underlying calcium oscillations in melanotrope cells of Xenopus laevis. Cell Calcium. 1997 Sep;22(3):167–178. doi: 10.1016/s0143-4160(97)90010-5. [DOI] [PubMed] [Google Scholar]
  16. Li W., Llopis J., Whitney M., Zlokarnik G., Tsien R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature. 1998 Apr 30;392(6679):936–941. doi: 10.1038/31965. [DOI] [PubMed] [Google Scholar]
  17. Lieste J. R., Koopman W. J., Reynen V. C., Scheenen W. J., Jenks B. G., Roubos E. W. Action currents generate stepwise intracellular Ca2+ patterns in a neuroendocrine cell. J Biol Chem. 1998 Oct 2;273(40):25686–25694. doi: 10.1074/jbc.273.40.25686. [DOI] [PubMed] [Google Scholar]
  18. López-López J. R., Shacklock P. S., Balke C. W., Wier W. G. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science. 1995 May 19;268(5213):1042–1045. doi: 10.1126/science.7754383. [DOI] [PubMed] [Google Scholar]
  19. Naraghi M., Müller T. H., Neher E. Two-dimensional determination of the cellular Ca2+ binding in bovine chromaffin cells. Biophys J. 1998 Oct;75(4):1635–1647. doi: 10.1016/S0006-3495(98)77606-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Petersen O. H., Burdakov D., Tepikin A. V. Polarity in intracellular calcium signaling. Bioessays. 1999 Oct;21(10):851–860. doi: 10.1002/(SICI)1521-1878(199910)21:10<851::AID-BIES7>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  21. Scheenen W. J., Jenks B. G., Roubos E. W., Willems P. H. Spontaneous calcium oscillations in Xenopus laevis melanotrope cells are mediated by omega-conotoxin sensitive calcium channels. Cell Calcium. 1994 Jan;15(1):36–44. doi: 10.1016/0143-4160(94)90102-3. [DOI] [PubMed] [Google Scholar]
  22. Scheenen W. J., Jenks B. G., Willems P. H., Roubos E. W. Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis. Pflugers Arch. 1994 Jun;427(3-4):244–251. doi: 10.1007/BF00374530. [DOI] [PubMed] [Google Scholar]
  23. Scheenen W. J., Jenks B. G., van Dinter R. J., Roubos E. W. Spatial and temporal aspects of Ca2+ oscillations in Xenopus laevis melanotrope cells. Cell Calcium. 1996 Mar;19(3):219–227. doi: 10.1016/s0143-4160(96)90023-8. [DOI] [PubMed] [Google Scholar]
  24. Scheenen W. J., de Koning H. P., Jenks B. G., Vaudry H., Roubos E. W. The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels. J Neuroendocrinol. 1994 Aug;6(4):457–464. doi: 10.1111/j.1365-2826.1994.tb00607.x. [DOI] [PubMed] [Google Scholar]
  25. Sham J. S. Ca2+ release-induced inactivation of Ca2+ current in rat ventricular myocytes: evidence for local Ca2+ signalling. J Physiol. 1997 Apr 15;500(Pt 2):285–295. doi: 10.1113/jphysiol.1997.sp022020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shibuya I., Douglas W. W. Spontaneous cytosolic calcium pulsing detected in Xenopus melanotrophs: modulation by secreto-inhibitory and stimulant ligands. Endocrinology. 1993 May;132(5):2166–2175. doi: 10.1210/endo.132.5.8386613. [DOI] [PubMed] [Google Scholar]
  27. Thomas P., Wong J. G., Almers W. Millisecond studies of secretion in single rat pituitary cells stimulated by flash photolysis of caged Ca2+. EMBO J. 1993 Jan;12(1):303–306. doi: 10.1002/j.1460-2075.1993.tb05657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thorn P., Lawrie A. M., Smith P. M., Gallacher D. V., Petersen O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661–668. doi: 10.1016/0092-8674(93)90513-p. [DOI] [PubMed] [Google Scholar]
  29. Thorn P., Moreton R., Berridge M. Multiple, coordinated Ca2+ -release events underlie the inositol trisphosphate-induced local Ca2+ spikes in mouse pancreatic acinar cells. EMBO J. 1996 Mar 1;15(5):999–1003. [PMC free article] [PubMed] [Google Scholar]
  30. Tse F. W., Tse A., Hille B., Horstmann H., Almers W. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron. 1997 Jan;18(1):121–132. doi: 10.1016/s0896-6273(01)80051-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES