Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):89–96. doi: 10.1016/S0006-3495(01)75682-2

Ca(2+) channel inactivation heterogeneity reveals physiological unbinding of auxiliary beta subunits.

S Restituito 1, T Cens 1, M Rousset 1, P Charnet 1
PMCID: PMC1301494  PMID: 11423397

Abstract

Voltage gated Ca(2+) channel (VGCC) auxiliary beta subunits increase membrane expression of the main pore-forming alpha(1) subunits and finely tune channel activation and inactivation properties. In expression studies, co-expression of beta subunits also reduced neuronal Ca(2+) channel regulation by heterotrimeric G protein. Biochemical studies suggest that VGCC beta subunits and G protein betagamma can compete for overlapping interaction sites on VGCC alpha(1) subunits, suggesting a dynamic association of these subunits with alpha(1). In this work we have analyzed the stability of the alpha(1)/beta association under physiological conditions. Regulation of the alpha(1A) Ca(2+) channel inactivation properties by beta(1b) and beta(2a) subunits had two major effects: a shift in voltage-dependent inactivation (E(in)), and an increase of the non-inactivating current (R(in)). Unexpectedly, large variations in magnitude of the effects were recorded on E(in), when beta(1b) was expressed, and R(in), when beta(2a) was expressed. These variations were not proportional to the current amplitude, and occurred at similar levels of beta subunit expression. beta(2a)-induced variations of R(in) were, however, inversely proportional to the magnitude of G protein block. These data underline the two different mechanisms used by beta(1b) and beta(2a) to regulate channel inactivation, and suggest that the VGCC beta subunit can unbind the alpha1 subunit in physiological situations.

Full Text

The Full Text of this article is available as a PDF (131.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bichet D., Lecomte C., Sabatier J. M., Felix R., De Waard M. Reversibility of the Ca(2+) channel alpha(1)-beta subunit interaction. Biochem Biophys Res Commun. 2000 Nov 2;277(3):729–735. doi: 10.1006/bbrc.2000.3750. [DOI] [PubMed] [Google Scholar]
  2. Birnbaumer L., Qin N., Olcese R., Tareilus E., Platano D., Costantin J., Stefani E. Structures and functions of calcium channel beta subunits. J Bioenerg Biomembr. 1998 Aug;30(4):357–375. doi: 10.1023/a:1021989622656. [DOI] [PubMed] [Google Scholar]
  3. Bourinet E., Soong T. W., Stea A., Snutch T. P. Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1486–1491. doi: 10.1073/pnas.93.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cahill A. L., Hurley J. H., Fox A. P. Coexpression of cloned alpha(1B), beta(2a), and alpha(2)/delta subunits produces non-inactivating calcium currents similar to those found in bovine chromaffin cells. J Neurosci. 2000 Mar 1;20(5):1685–1693. doi: 10.1523/JNEUROSCI.20-05-01685.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cens T., Mangoni M. E., Richard S., Nargeot J., Charnet P. Coexpression of the beta2 subunit does not induce voltage-dependent facilitation of the class C L-type Ca channel. Pflugers Arch. 1996 Mar;431(5):771–774. [PubMed] [Google Scholar]
  6. Cens T., Restituito S., Galas S., Charnet P. Voltage and calcium use the same molecular determinants to inactivate calcium channels. J Biol Chem. 1999 Feb 26;274(9):5483–5490. doi: 10.1074/jbc.274.9.5483. [DOI] [PubMed] [Google Scholar]
  7. Cens T., Restituito S., Vallentin A., Charnet P. Promotion and inhibition of L-type Ca2+ channel facilitation by distinct domains of the subunit. J Biol Chem. 1998 Jul 17;273(29):18308–18315. doi: 10.1074/jbc.273.29.18308. [DOI] [PubMed] [Google Scholar]
  8. Chien A. J., Carr K. M., Shirokov R. E., Rios E., Hosey M. M. Identification of palmitoylation sites within the L-type calcium channel beta2a subunit and effects on channel function. J Biol Chem. 1996 Oct 25;271(43):26465–26468. doi: 10.1074/jbc.271.43.26465. [DOI] [PubMed] [Google Scholar]
  9. Chien A. J., Gao T., Perez-Reyes E., Hosey M. M. Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. J Biol Chem. 1998 Sep 4;273(36):23590–23597. doi: 10.1074/jbc.273.36.23590. [DOI] [PubMed] [Google Scholar]
  10. De Waard M., Campbell K. P. Subunit regulation of the neuronal alpha 1A Ca2+ channel expressed in Xenopus oocytes. J Physiol. 1995 Jun 15;485(Pt 3):619–634. doi: 10.1113/jphysiol.1995.sp020757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Waard M., Liu H., Walker D., Scott V. E., Gurnett C. A., Campbell K. P. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature. 1997 Jan 30;385(6615):446–450. doi: 10.1038/385446a0. [DOI] [PubMed] [Google Scholar]
  12. De Waard M., Pragnell M., Campbell K. P. Ca2+ channel regulation by a conserved beta subunit domain. Neuron. 1994 Aug;13(2):495–503. doi: 10.1016/0896-6273(94)90363-8. [DOI] [PubMed] [Google Scholar]
  13. De Waard M., Scott V. E., Pragnell M., Campbell K. P. Identification of critical amino acids involved in alpha1-beta interaction in voltage-dependent Ca2+ channels. FEBS Lett. 1996 Feb 19;380(3):272–276. doi: 10.1016/0014-5793(96)00007-5. [DOI] [PubMed] [Google Scholar]
  14. De Waard M., Witcher D. R., Pragnell M., Liu H., Campbell K. P. Properties of the alpha 1-beta anchoring site in voltage-dependent Ca2+ channels. J Biol Chem. 1995 May 19;270(20):12056–12064. doi: 10.1074/jbc.270.20.12056. [DOI] [PubMed] [Google Scholar]
  15. Gao T., Chien A. J., Hosey M. M. Complexes of the alpha1C and beta subunits generate the necessary signal for membrane targeting of class C L-type calcium channels. J Biol Chem. 1999 Jan 22;274(4):2137–2144. doi: 10.1074/jbc.274.4.2137. [DOI] [PubMed] [Google Scholar]
  16. Gerster U., Neuhuber B., Groschner K., Striessnig J., Flucher B. E. Current modulation and membrane targeting of the calcium channel alpha1C subunit are independent functions of the beta subunit. J Physiol. 1999 Jun 1;517(Pt 2):353–368. doi: 10.1111/j.1469-7793.1999.0353t.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hurley J. H., Cahill A. L., Currie K. P., Fox A. P. The role of dynamic palmitoylation in Ca2+ channel inactivation. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9293–9298. doi: 10.1073/pnas.160589697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones L. P., Wei S. K., Yue D. T. Mechanism of auxiliary subunit modulation of neuronal alpha1E calcium channels. J Gen Physiol. 1998 Aug;112(2):125–143. doi: 10.1085/jgp.112.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mangoni M. E., Cens T., Dalle C., Nargeot J., Charnet P. Characterisation of alpha 1A Ba2+, Sr2+ and Ca2+ currents recorded with the ancillary beta 1-4 subunits. Receptors Channels. 1997;5(1):1–14. [PubMed] [Google Scholar]
  20. Olcese R., Qin N., Schneider T., Neely A., Wei X., Stefani E., Birnbaumer L. The amino terminus of a calcium channel beta subunit sets rates of channel inactivation independently of the subunit's effect on activation. Neuron. 1994 Dec;13(6):1433–1438. doi: 10.1016/0896-6273(94)90428-6. [DOI] [PubMed] [Google Scholar]
  21. Perez-Reyes E., Castellano A., Kim H. S., Bertrand P., Baggstrom E., Lacerda A. E., Wei X. Y., Birnbaumer L. Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. J Biol Chem. 1992 Jan 25;267(3):1792–1797. [PubMed] [Google Scholar]
  22. Pragnell M., De Waard M., Mori Y., Tanabe T., Snutch T. P., Campbell K. P. Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature. 1994 Mar 3;368(6466):67–70. doi: 10.1038/368067a0. [DOI] [PubMed] [Google Scholar]
  23. Pragnell M., Sakamoto J., Jay S. D., Campbell K. P. Cloning and tissue-specific expression of the brain calcium channel beta-subunit. FEBS Lett. 1991 Oct 21;291(2):253–258. doi: 10.1016/0014-5793(91)81296-k. [DOI] [PubMed] [Google Scholar]
  24. Qin N., Olcese R., Zhou J., Cabello O. A., Birnbaumer L., Stefani E. Identification of a second region of the beta-subunit involved in regulation of calcium channel inactivation. Am J Physiol. 1996 Nov;271(5 Pt 1):C1539–C1545. doi: 10.1152/ajpcell.1996.271.5.C1539. [DOI] [PubMed] [Google Scholar]
  25. Qin N., Platano D., Olcese R., Costantin J. L., Stefani E., Birnbaumer L. Unique regulatory properties of the type 2a Ca2+ channel beta subunit caused by palmitoylation. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4690–4695. doi: 10.1073/pnas.95.8.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Restituito S., Cens T., Barrere C., Geib S., Galas S., De Waard M., Charnet P. The [beta]2a subunit is a molecular groom for the Ca2+ channel inactivation gate. J Neurosci. 2000 Dec 15;20(24):9046–9052. doi: 10.1523/JNEUROSCI.20-24-09046.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sather W. A., Tanabe T., Zhang J. F., Mori Y., Adams M. E., Tsien R. W. Distinctive biophysical and pharmacological properties of class A (BI) calcium channel alpha 1 subunits. Neuron. 1993 Aug;11(2):291–303. doi: 10.1016/0896-6273(93)90185-t. [DOI] [PubMed] [Google Scholar]
  28. Starr T. V., Prystay W., Snutch T. P. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5621–5625. doi: 10.1073/pnas.88.13.5621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stea A., Tomlinson W. J., Soong T. W., Bourinet E., Dubel S. J., Vincent S. R., Snutch T. P. Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10576–10580. doi: 10.1073/pnas.91.22.10576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tareilus E., Roux M., Qin N., Olcese R., Zhou J., Stefani E., Birnbaumer L. A Xenopus oocyte beta subunit: evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1703–1708. doi: 10.1073/pnas.94.5.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vance C. L., Begg C. M., Lee W. L., Haase H., Copeland T. D., McEnery M. W. Differential expression and association of calcium channel alpha1B and beta subunits during rat brain ontogeny. J Biol Chem. 1998 Jun 5;273(23):14495–14502. doi: 10.1074/jbc.273.23.14495. [DOI] [PubMed] [Google Scholar]
  32. Walker D., Bichet D., Campbell K. P., De Waard M. A beta 4 isoform-specific interaction site in the carboxyl-terminal region of the voltage-dependent Ca2+ channel alpha 1A subunit. J Biol Chem. 1998 Jan 23;273(4):2361–2367. doi: 10.1074/jbc.273.4.2361. [DOI] [PubMed] [Google Scholar]
  33. Walker D., De Waard M. Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 1998 Apr;21(4):148–154. doi: 10.1016/s0166-2236(97)01200-9. [DOI] [PubMed] [Google Scholar]
  34. Zamponi G. W., Bourinet E., Nelson D., Nargeot J., Snutch T. P. Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature. 1997 Jan 30;385(6615):442–446. doi: 10.1038/385442a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES