Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):125–136. doi: 10.1016/S0006-3495(01)75686-X

Modulation of Kv1.5 potassium channel gating by extracellular zinc.

S Zhang 1, S J Kehl 1, D Fedida 1
PMCID: PMC1301498  PMID: 11423401

Abstract

Zinc ions are known to induce a variable depolarizing shift of the ionic current half-activation potential and substantially slow the activation kinetics of most K(+) channels. In Kv1.5, Zn(2+) also reduces ionic current, and this is relieved by increasing the external K(+) or Cs(+) concentration. Here we have investigated the actions of Zn(2+) on the gating currents of Kv1.5 channels expressed in HEK cells. Zn(2+) shifted the midpoint of the charge-voltage (Q-V) curve substantially more (approximately 2 times) than it shifted the V(1/2) of the g-V curve, and this amounted to +60 mV at 1 mM Zn(2+). Both Q1 and Q2 activation charge components were similarly affected by Zn(2+), which indicated free access of Zn(2+) to channel closed states. The maximal charge movement was also reduced by 1 mM Zn(2+) by approximately 15%, from 1.6 +/- 0.5 to 1.4 +/- 0.47 pC (n = 4). Addition of external K(+) or Cs(+), which relieved the Zn(2+)-induced ionic current reduction, decreased the extent of the Zn(2+)-induced Q-V shift. In 135 mM extracellular Cs(+), 200 microM Zn(2+) reduced ionic current by only 8 +/- 1%, compared with 71% reduction in 0 mM extracellular Cs(+), and caused a comparable shift in both the g-V and Q-V relations (17.9 +/- 0.6 mV vs. 20.8 +/- 2.1 mV, n = 6). Our results confirm the presence of two independent binding sites involved in the Zn(2+) actions. Whereas binding to one site accounts for reduction of current and binding to the other site accounts for the gating shift in ionic current recordings, both sites contribute to the Zn(2+)-induced Q-V shift.

Full Text

The Full Text of this article is available as a PDF (176.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Cota G. Calcium ion as a cofactor in Na channel gating. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6528–6531. doi: 10.1073/pnas.88.15.6528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bezanilla F., Perozo E., Stefani E. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J. 1994 Apr;66(4):1011–1021. doi: 10.1016/S0006-3495(94)80882-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouchard R., Fedida D. Closed- and open-state binding of 4-aminopyridine to the cloned human potassium channel Kv1.5. J Pharmacol Exp Ther. 1995 Nov;275(2):864–876. [PubMed] [Google Scholar]
  4. Chen F. S., Steele D., Fedida D. Allosteric effects of permeating cations on gating currents during K+ channel deactivation. J Gen Physiol. 1997 Aug;110(2):87–100. doi: 10.1085/jgp.110.2.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davidson J. L., Kehl S. J. Changes of activation and inactivation gating of the transient potassium current of rat pituitary melanotrophs caused by micromolar Cd2+ and Zn2+. Can J Physiol Pharmacol. 1995 Jan;73(1):36–42. doi: 10.1139/y95-005. [DOI] [PubMed] [Google Scholar]
  6. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  7. Elinder F., Madeja M., Arhem P. Surface Charges of K channels. Effects of strontium on five cloned channels expressed in Xenopus oocytes. J Gen Physiol. 1996 Oct;108(4):325–332. doi: 10.1085/jgp.108.4.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilly W. F., Armstrong C. M. Divalent cations and the activation kinetics of potassium channels in squid giant axons. J Gen Physiol. 1982 Jun;79(6):965–996. doi: 10.1085/jgp.79.6.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilly W. F., Armstrong C. M. Slowing of sodium channel opening kinetics in squid axon by extracellular zinc. J Gen Physiol. 1982 Jun;79(6):935–964. doi: 10.1085/jgp.79.6.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrison N. L., Radke H. K., Tamkun M. M., Lovinger D. M. Modulation of gating of cloned rat and human K+ channels by micromolar Zn2+. Mol Pharmacol. 1993 Mar;43(3):482–486. [PubMed] [Google Scholar]
  12. Hesketh J. C., Fedida D. Sequential gating in the human heart K(+) channel Kv1.5 incorporates Q(1) and Q(2) charge components. Am J Physiol. 1999 Nov;277(5 Pt 2):H1956–H1966. doi: 10.1152/ajpheart.1999.277.5.H1956. [DOI] [PubMed] [Google Scholar]
  13. Hurst R. S., Roux M. J., Toro L., Stefani E. External barium influences the gating charge movement of Shaker potassium channels. Biophys J. 1997 Jan;72(1):77–84. doi: 10.1016/S0006-3495(97)78648-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuo C. C., Chen F. P. Zn2+ modulation of neuronal transient K+ current: fast and selective binding to the deactivated channels. Biophys J. 1999 Nov;77(5):2552–2562. doi: 10.1016/s0006-3495(99)77090-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ledwell J. L., Aldrich R. W. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. J Gen Physiol. 1999 Mar;113(3):389–414. doi: 10.1085/jgp.113.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loots E., Isacoff E. Y. Molecular coupling of S4 to a K(+) channel's slow inactivation gate. J Gen Physiol. 2000 Nov;116(5):623–636. doi: 10.1085/jgp.116.5.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCormack K., Joiner W. J., Heinemann S. H. A characterization of the activating structural rearrangements in voltage-dependent Shaker K+ channels. Neuron. 1994 Feb;12(2):301–315. doi: 10.1016/0896-6273(94)90273-9. [DOI] [PubMed] [Google Scholar]
  18. Perozo E., MacKinnon R., Bezanilla F., Stefani E. Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron. 1993 Aug;11(2):353–358. doi: 10.1016/0896-6273(93)90190-3. [DOI] [PubMed] [Google Scholar]
  19. Poling J. S., Vicini S., Rogawski M. A., Salem N., Jr Docosahexaenoic acid block of neuronal voltage-gated K+ channels: subunit selective antagonism by zinc. Neuropharmacology. 1996;35(7):969–982. doi: 10.1016/0028-3908(96)00127-x. [DOI] [PubMed] [Google Scholar]
  20. Schoppa N. E., Sigworth F. J. Activation of Shaker potassium channels. II. Kinetics of the V2 mutant channel. J Gen Physiol. 1998 Feb;111(2):295–311. doi: 10.1085/jgp.111.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spires S., Begenisich T. Chemical properties of the divalent cation binding site on potassium channels. J Gen Physiol. 1992 Aug;100(2):181–193. doi: 10.1085/jgp.100.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spires S., Begenisich T. Modification of potassium channel kinetics by amino group reagents. J Gen Physiol. 1992 Jan;99(1):109–129. doi: 10.1085/jgp.99.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spires S., Begenisich T. Modulation of potassium channel gating by external divalent cations. J Gen Physiol. 1994 Oct;104(4):675–692. doi: 10.1085/jgp.104.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spires S., Begenisich T. Voltage-independent gating transitions in squid axon potassium channels. Biophys J. 1995 Feb;68(2):491–500. doi: 10.1016/S0006-3495(95)80210-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Starkus J. G., Kuschel L., Rayner M. D., Heinemann S. H. Macroscopic Na+ currents in the "Nonconducting" Shaker potassium channel mutant W434F. J Gen Physiol. 1998 Jul;112(1):85–93. doi: 10.1085/jgp.112.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stefani E., Toro L., Perozo E., Bezanilla F. Gating of Shaker K+ channels: I. Ionic and gating currents. Biophys J. 1994 Apr;66(4):996–1010. doi: 10.1016/S0006-3495(94)80881-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steidl J. V., Yool A. J. Differential sensitivity of voltage-gated potassium channels Kv1.5 and Kv1.2 to acidic pH and molecular identification of pH sensor. Mol Pharmacol. 1999 May;55(5):812–820. [PubMed] [Google Scholar]
  28. Zagotta W. N., Aldrich R. W. Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol. 1990 Jan;95(1):29–60. doi: 10.1085/jgp.95.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zagotta W. N., Hoshi T., Aldrich R. W. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J Gen Physiol. 1994 Feb;103(2):321–362. doi: 10.1085/jgp.103.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhang S., Kwan D. C., Fedida D., Kehl S. J. External K(+) relieves the block but not the gating shift caused by Zn(2+) in human Kv1.5 potassium channels. J Physiol. 2001 Apr 15;532(Pt 2):349–358. doi: 10.1111/j.1469-7793.2001.0349f.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES