Abstract
The area balance or imbalance between the inner and outer monolayer of biological membranes is a key parameter for driving shape changes (including exo and endocytosis) and controlling the bilayer curvature stress. The asymmetric incorporation of a drug or biological agent interferes with these processes, and the subsequent stress may lead to a membrane permeation or permeabilization. A main goal of this study is to introduce new methods to characterize such phenomena using isothermal titration calorimetry. POPC unilamellar vesicles and a series of alkyl maltosides are used as model systems; the unilamellarity was checked by NMR with the shift reagent Pr(3+). The free energy, enthalpy, and entropy associated with the asymmetry stress are estimated by comparing partitioning data of uptake versus release assays. The asymmetry stress is of enthalpic nature and somewhat reduced by entropic effects. Stimulated membrane permeation occurs at a mean maltoside-to-lipid ratio of approximately 0.2, which corresponds to an apparent area asymmetry of approximately 30% and a limiting free energy of the order of 2 kJ/mol of maltoside. Membrane solubilization to coexisting micelles proceeds at mole ratios of approximately 0.73, 0.81, and 0.88 (C(12)-, C(13)-, and C(14)-maltoside, respectively). Experiments with vesicles pre-loaded with surfactant in both monolayers provide evidence that the translocation threshold is controlled by the asymmetrically incorporated surfactant, whereas the onset of solubilization depends on the total surfactant content in the membrane. Free copies of the uptake and release fitting script including instructions are available upon request to heerklotz@gmx.net.
Full Text
The Full Text of this article is available as a PDF (124.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157–183. doi: 10.1016/s0005-2736(99)00205-9. [DOI] [PubMed] [Google Scholar]
- Bobrowska-Hägerstrand M., Kralj-Iglic V., Iglic A., Bialkowska K., Isomaa B., Hägerstrand H. Torocyte membrane endovesicles induced by octaethyleneglycol dodecylether in human erythrocytes. Biophys J. 1999 Dec;77(6):3356–3362. doi: 10.1016/S0006-3495(99)77167-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Kruijff B., Cullis P. R., Radda G. K. Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles. Biochim Biophys Acta. 1976 Jul 15;436(4):729–740. doi: 10.1016/0005-2736(76)90402-8. [DOI] [PubMed] [Google Scholar]
- Evans E, Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett. 1990 Apr 23;64(17):2094–2097. doi: 10.1103/PhysRevLett.64.2094. [DOI] [PubMed] [Google Scholar]
- Farge E., Bitbol M., Devaux P. F. Biomembrane elastic response to intercalation of amphiphiles. Eur Biophys J. 1990;19(2):69–72. doi: 10.1007/BF00185088. [DOI] [PubMed] [Google Scholar]
- Farge E., Ojcius D. M., Subtil A., Dautry-Varsat A. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am J Physiol. 1999 Mar;276(3 Pt 1):C725–C733. doi: 10.1152/ajpcell.1999.276.3.C725. [DOI] [PubMed] [Google Scholar]
- Fröhlich M., Brecht V., Peschka-Süss R. Parameters influencing the determination of liposome lamellarity by 31P-NMR. Chem Phys Lipids. 2001 Jan;109(1):103–112. doi: 10.1016/s0009-3084(00)00220-6. [DOI] [PubMed] [Google Scholar]
- Heerklotz H. H., Binder H., Epand R. M. A "release" protocol for isothermal titration calorimetry. Biophys J. 1999 May;76(5):2606–2613. doi: 10.1016/S0006-3495(99)77413-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heerklotz H., Epand R. M. The enthalpy of acyl chain packing and the apparent water-accessible apolar surface area of phospholipids. Biophys J. 2001 Jan;80(1):271–279. doi: 10.1016/S0006-3495(01)76012-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heerklotz H., Seelig J. Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. Biophys J. 2000 May;78(5):2435–2440. doi: 10.1016/S0006-3495(00)76787-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heerklotz H., Seelig J. Titration calorimetry of surfactant-membrane partitioning and membrane solubilization. Biochim Biophys Acta. 2000 Nov 23;1508(1-2):69–85. doi: 10.1016/s0304-4157(00)00009-5. [DOI] [PubMed] [Google Scholar]
- Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
- Huang H. W. Action of antimicrobial peptides: two-state model. Biochemistry. 2000 Jul 25;39(29):8347–8352. doi: 10.1021/bi000946l. [DOI] [PubMed] [Google Scholar]
- Hägerstrand H., Isomaa B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim Biophys Acta. 1992 Aug 24;1109(2):117–126. doi: 10.1016/0005-2736(92)90074-v. [DOI] [PubMed] [Google Scholar]
- Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kragh-Hansen U., le Maire M., Møller J. V. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J. 1998 Dec;75(6):2932–2946. doi: 10.1016/S0006-3495(98)77735-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lasch J., Berdichevsky V. R., Torchilin V. P., Koelsch R., Kretschmer K. A method to measure critical detergent parameters. Preparation of liposomes. Anal Biochem. 1983 Sep;133(2):486–491. doi: 10.1016/0003-2697(83)90114-8. [DOI] [PubMed] [Google Scholar]
- Lasch J. Interaction of detergents with lipid vesicles. Biochim Biophys Acta. 1995 Jul 17;1241(2):269–292. doi: 10.1016/0304-4157(95)00010-o. [DOI] [PubMed] [Google Scholar]
- Lindgren M., Hällbrink M., Prochiantz A., Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000 Mar;21(3):99–103. doi: 10.1016/s0165-6147(00)01447-4. [DOI] [PubMed] [Google Scholar]
- MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
- Mui B. L., Döbereiner H. G., Madden T. D., Cullis P. R. Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys J. 1995 Sep;69(3):930–941. doi: 10.1016/S0006-3495(95)79967-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nebel S., Ganz P., Seelig J. Heat changes in lipid membranes under sudden osmotic stress. Biochemistry. 1997 Mar 11;36(10):2853–2859. doi: 10.1021/bi961839n. [DOI] [PubMed] [Google Scholar]
- Olbrich K., Rawicz W., Needham D., Evans E. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys J. 2000 Jul;79(1):321–327. doi: 10.1016/S0006-3495(00)76294-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauch C., Farge E. Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys J. 2000 Jun;78(6):3036–3047. doi: 10.1016/S0006-3495(00)76842-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rawicz W., Olbrich K. C., McIntosh T., Needham D., Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 2000 Jul;79(1):328–339. doi: 10.1016/S0006-3495(00)76295-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sackmann E., Duwe H. P., Engelhardt H. Membrane bending elasticity and its role for shape fluctuations and shape transformations of cells and vesicles. Faraday Discuss Chem Soc. 1986;(81):281–290. doi: 10.1039/dc9868100281. [DOI] [PubMed] [Google Scholar]
- Schubert R., Beyer K., Wolburg H., Schmidt K. H. Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate. Biochemistry. 1986 Sep 9;25(18):5263–5269. doi: 10.1021/bi00366a042. [DOI] [PubMed] [Google Scholar]
- Schubert R., Jaroni H., Schoelmerich J., Schmidt K. H. Studies on the mechanism of bile salt-induced liposomal membrane damage. Digestion. 1983;28(3):181–190. doi: 10.1159/000198984. [DOI] [PubMed] [Google Scholar]
- Schwarz S., Haest C. W., Deuticke B. Extensive electroporation abolishes experimentally induced shape transformations of erythrocytes: a consequence of phospholipid symmetrization? Biochim Biophys Acta. 1999 Oct 15;1421(2):361–379. doi: 10.1016/s0005-2736(99)00138-8. [DOI] [PubMed] [Google Scholar]
- Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55–70. doi: 10.1016/s0005-2736(99)00200-x. [DOI] [PubMed] [Google Scholar]
- Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uematsu N., Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J. 2000 Oct;79(4):2075–2083. doi: 10.1016/S0006-3495(00)76455-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueno M. Partition behavior of a nonionic detergent, octyl glucoside, between membrane and water phases, and its effect on membrane permeability. Biochemistry. 1989 Jun 27;28(13):5631–5634. doi: 10.1021/bi00439a044. [DOI] [PubMed] [Google Scholar]
- Vogt B., Ducarme P., Schinzel S., Brasseur R., Bechinger B. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling. Biophys J. 2000 Nov;79(5):2644–2656. doi: 10.1016/S0006-3495(00)76503-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenk M. R., Alt T., Seelig A., Seelig J. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Biophys J. 1997 Apr;72(4):1719–1731. doi: 10.1016/S0006-3495(97)78818-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieprecht T., Beyermann M., Seelig J. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry. 1999 Aug 10;38(32):10377–10387. doi: 10.1021/bi990913+. [DOI] [PubMed] [Google Scholar]
- de la Maza A., Parra J. L. Solubilizing effects caused by the nonionic surfactant dodecylmaltoside in phosphatidylcholine liposomes. Biophys J. 1997 Apr;72(4):1668–1675. doi: 10.1016/S0006-3495(97)78812-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
