Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):243–254. doi: 10.1016/S0006-3495(01)75695-0

The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes.

N Fuller 1, R P Rand 1
PMCID: PMC1301507  PMID: 11423410

Abstract

The effects of lysolipids on phospholipid layer curvature and bending elasticity were examined using x-ray diffraction and the osmotic stress method. Lysolipids with two different head groups, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and differing hydrocarbon chains were mixed with the hexagonal-forming lipid, dioleoylphosphatidylethanolamine (DOPE). With up to 30 mole% lysolipid in DOPE, the mixture maintains the inverted hexagonal (H(II)) phase in excess water, where increasing levels of lysolipid result in a systematic increase in the H(II) lattice dimension. Analysis of the structural changes imposed by lysolipids show that, opposite to DOPE itself, which has an spontaneous radius of curvature (R(0)) of -30 A, PC lysolipids add high positive curvature, with R(0) = +38 to +60 A, depending on chain length. LysoPEs, in contrast, add very small curvatures. When both polar group and hydrocarbon chains of the added lysolipid mismatch those of DOPE, the structural effects are qualitatively different from otherwise. Such mismatched lysolipids "reshape" the effective combination molecule into a longer and more cylindrical configuration compared to those lysolipids with either matching polar group or hydrocarbon chain.

Full Text

The Full Text of this article is available as a PDF (169.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asaoka Y., Yoshida K., Sasaki Y., Nishizuka Y., Murakami M., Kudo I., Inoue K. Possible role of mammalian secretory group II phospholipase A2 in T-lymphocyte activation: implication in propagation of inflammatory reaction. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):716–719. doi: 10.1073/pnas.90.2.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asaoka Y., Yoshida K., Sasaki Y., Nishizuka Y. Potential role of phospholipase A2 in HL-60 cell differentiation to macrophages induced by protein kinase C activation. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4917–4921. doi: 10.1073/pnas.90.11.4917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker B. L., Blaxall B. C., Reese D. A., Smith G. R., Bell J. D. Quantification of the interaction between lysolecithin and phospholipase A2. Biochim Biophys Acta. 1994 Mar 24;1211(3):289–300. doi: 10.1016/0005-2760(94)90153-8. [DOI] [PubMed] [Google Scholar]
  4. Bhamidipati S. P., Hamilton J. A. Interactions of lyso 1-palmitoylphosphatidylcholine with phospholipids: a 13C and 31P NMR study. Biochemistry. 1995 Apr 25;34(16):5666–5677. doi: 10.1021/bi00016a043. [DOI] [PubMed] [Google Scholar]
  5. Brown S. D., Baker B. L., Bell J. D. Quantification of the interaction of lysolecithin with phosphatidylcholine vesicles using bovine serum albumin: relevance to the activation of phospholipase A2. Biochim Biophys Acta. 1993 May 20;1168(1):13–22. doi: 10.1016/0005-2760(93)90260-g. [DOI] [PubMed] [Google Scholar]
  6. Chen Z., Rand R. P. Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases. Biophys J. 1998 Feb;74(2 Pt 1):944–952. doi: 10.1016/S0006-3495(98)74017-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Z., Rand R. P. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997 Jul;73(1):267–276. doi: 10.1016/S0006-3495(97)78067-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chernomordik L. V., Leikina E., Frolov V., Bronk P., Zimmerberg J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J Cell Biol. 1997 Jan 13;136(1):81–93. doi: 10.1083/jcb.136.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chernomordik L. V., Melikyan G. B., Chizmadzhev Y. A. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim Biophys Acta. 1987 Oct 5;906(3):309–352. doi: 10.1016/0304-4157(87)90016-5. [DOI] [PubMed] [Google Scholar]
  10. Chernomordik L. V., Vogel S. S., Sokoloff A., Onaran H. O., Leikina E. A., Zimmerberg J. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 1993 Feb 22;318(1):71–76. doi: 10.1016/0014-5793(93)81330-3. [DOI] [PubMed] [Google Scholar]
  11. Chernomordik L., Chanturiya A., Green J., Zimmerberg J. The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J. 1995 Sep;69(3):922–929. doi: 10.1016/S0006-3495(95)79966-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chernomordik L., Kozlov M. M., Zimmerberg J. Lipids in biological membrane fusion. J Membr Biol. 1995 Jul;146(1):1–14. doi: 10.1007/BF00232676. [DOI] [PubMed] [Google Scholar]
  13. Chernomordik L., Leikina E., Cho M. S., Zimmerberg J. Control of baculovirus gp64-induced syncytium formation by membrane lipid composition. J Virol. 1995 May;69(5):3049–3058. doi: 10.1128/jvi.69.5.3049-3058.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  15. Dan N., Safran S. A. Effect of lipid characteristics on the structure of transmembrane proteins. Biophys J. 1998 Sep;75(3):1410–1414. doi: 10.1016/S0006-3495(98)74059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eibl H., Hill E. E., Lands W. E. The subcellular distribution of acyltransferases which catalyze the synthesis of phosphoglycerides. Eur J Biochem. 1969 Jun;9(2):250–258. doi: 10.1111/j.1432-1033.1969.tb00602.x. [DOI] [PubMed] [Google Scholar]
  17. Gruner S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3665–3669. doi: 10.1073/pnas.82.11.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gruner S. M., Parsegian V. A., Rand R. P. Directly measured deformation energy of phospholipid HII hexagonal phases. Faraday Discuss Chem Soc. 1986;(81):29–37. doi: 10.1039/dc9868100029. [DOI] [PubMed] [Google Scholar]
  19. Günther-Ausborn S., Praetor A., Stegmann T. Inhibition of influenza-induced membrane fusion by lysophosphatidylcholine. J Biol Chem. 1995 Dec 8;270(49):29279–29285. doi: 10.1074/jbc.270.49.29279. [DOI] [PubMed] [Google Scholar]
  20. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  21. Kozlov M. M., Leikin S. L., Chernomordik L. V., Markin V. S., Chizmadzhev Y. A. Stalk mechanism of vesicle fusion. Intermixing of aqueous contents. Eur Biophys J. 1989;17(3):121–129. doi: 10.1007/BF00254765. [DOI] [PubMed] [Google Scholar]
  22. Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LUZZATI V., HUSSON F. The structure of the liquid-crystalline phasis of lipid-water systems. J Cell Biol. 1962 Feb;12:207–219. doi: 10.1083/jcb.12.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee Y., Chan S. I. Effect of lysolecithin on the structure and permeability of lecithin bilayer vesicles. Biochemistry. 1977 Apr 5;16(7):1303–1309. doi: 10.1021/bi00626a010. [DOI] [PubMed] [Google Scholar]
  25. Leikin S. L., Kozlov M. M., Chernomordik L. V., Markin V. S., Chizmadzhev Y. A. Membrane fusion: overcoming of the hydration barrier and local restructuring. J Theor Biol. 1987 Dec 21;129(4):411–425. doi: 10.1016/s0022-5193(87)80021-8. [DOI] [PubMed] [Google Scholar]
  26. Leikin S., Kozlov M. M., Fuller N. L., Rand R. P. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys J. 1996 Nov;71(5):2623–2632. doi: 10.1016/S0006-3495(96)79454-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lundbaek J. A., Andersen O. S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J Gen Physiol. 1994 Oct;104(4):645–673. doi: 10.1085/jgp.104.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McCallum C. D., Epand R. M. Insulin receptor autophosphorylation and signaling is altered by modulation of membrane physical properties. Biochemistry. 1995 Feb 14;34(6):1815–1824. doi: 10.1021/bi00006a001. [DOI] [PubMed] [Google Scholar]
  29. Poole A. R., Howell J. I., Lucy J. A. Lysolecithin and cell fusion. Nature. 1970 Aug 22;227(5260):810–814. doi: 10.1038/227810a0. [DOI] [PubMed] [Google Scholar]
  30. Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. ROBERTSON A. F., LANDS W. E. METABOLISM OF PHOSPHOLIPIDS IN NORMAL AND SPHEROCYTIC HUMAN ERYTHROCYTES. J Lipid Res. 1964 Jan;5:88–93. [PubMed] [Google Scholar]
  32. Rand R. P., Fuller N. L., Gruner S. M., Parsegian V. A. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry. 1990 Jan 9;29(1):76–87. doi: 10.1021/bi00453a010. [DOI] [PubMed] [Google Scholar]
  33. Rand R. P., Pangborn W. A., Purdon A. D., Tinker D. O. Lysolecithin and cholesterol interact stoichiometrically forming bimolecular lamellar structures in the presence of excess water, of lysolecithin or cholesterol. Can J Biochem. 1975 Feb;53(2):189–195. doi: 10.1139/o75-027. [DOI] [PubMed] [Google Scholar]
  34. Reman F. C., Demel R. A., De Gier J., van Deenen L. L., Eibl H., Westphal O. Studies on the lysis of red cells and bimolecular lipid leaflets by synthetic lysolecithins, lecithins and structural analogs. Chem Phys Lipids. 1969 Sep;3(3):221–233. doi: 10.1016/0009-3084(69)90014-0. [DOI] [PubMed] [Google Scholar]
  35. Sasaki Y., Asaoka Y., Nishizuka Y. Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids. Subspecies difference. FEBS Lett. 1993 Mar 29;320(1):47–51. doi: 10.1016/0014-5793(93)81655-j. [DOI] [PubMed] [Google Scholar]
  36. Shier W. T., Baldwin J. H., Nilsen-Hamilton M., Hamilton R. T., Thanassi N. M. Regulation of guanylate and adenylate cyclase activities by lysolecithin. Proc Natl Acad Sci U S A. 1976 May;73(5):1586–1590. doi: 10.1073/pnas.73.5.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Van Golde L. M., Fleischer B., Fleischer S. Some studies on the metabolism of phospholipids in Golgi complex from bovine and rat liver in comparison to other subcellular fractions. Biochim Biophys Acta. 1971 Oct 12;249(1):318–330. doi: 10.1016/0005-2736(71)90109-x. [DOI] [PubMed] [Google Scholar]
  39. Weltzien H. U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys Acta. 1979 Aug 20;559(2-3):259–287. doi: 10.1016/0304-4157(79)90004-2. [DOI] [PubMed] [Google Scholar]
  40. Wu H., Zheng L., Lentz B. R. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles. Biochemistry. 1996 Sep 24;35(38):12602–12611. doi: 10.1021/bi960168q. [DOI] [PubMed] [Google Scholar]
  41. Yeagle P. L., Smith F. T., Young J. E., Flanagan T. D. Inhibition of membrane fusion by lysophosphatidylcholine. Biochemistry. 1994 Feb 22;33(7):1820–1827. doi: 10.1021/bi00173a027. [DOI] [PubMed] [Google Scholar]
  42. Zhelev D. V. Material property characteristics for lipid bilayers containing lysolipid. Biophys J. 1998 Jul;75(1):321–330. doi: 10.1016/S0006-3495(98)77516-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES