Abstract
Solid-state deuterium ((2)H) NMR spectroscopy was used to study the reorientation of magnetically ordered bicelles in the presence of the paramagnetic lanthanide Eu(3+). Bicelles were composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) plus 1,2-dihexanoyl-sn-glycero-3-phosphocholine plus either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol, or the cationic lipid 1,2-dimyristoyl-3-trimethyl ammonium propane. Alignment of the bicelles in the magnetic field produced (2)H NMR spectra consisting of a pair of quadrupole doublets, one from the alpha-deuterons and one from the beta-deuterons of DMPC-alpha,beta-d(4). Eu(3+) addition induced the appearance of a second set of quadrupole doublets, having approximately twice the quadrupolar splittings of the originals, and growing progressively in intensity with increasing Eu(3+), at the expense of the intensity of the originals. The new resonances were attributed to bicelles having a parallel alignment with respect to the magnetic field, as opposed to the perpendicular alignment preferred in the absence of Eu(3+). Therefore, the equilibrium degree and kinetics of reorientation could be evaluated from the (2)H NMR spectra. For more cationic initial surface charges, higher amounts of added Eu(3+) were required to induce a given degree of reorientation. However, the equilibrium degree of bicellar reorientation was found to depend solely on the amount of bound Eu(3+), regardless of the bicelle composition. The kinetics of reorientation were a function of lipid concentration. At high lipid concentration, a single fast rate of reorientation (minutes) described the approach to the equilibrium degree of orientation. At lower lipid concentrations, two rates processes were discernible: one fast (minutes) and one slow (hours). The data indicate, therefore, that bicelle reorientation is a phase transition made critical by bicelle-bicelle interactions.
Full Text
The Full Text of this article is available as a PDF (145.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bax A., Tjandra N. High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. J Biomol NMR. 1997 Oct;10(3):289–292. doi: 10.1023/a:1018308717741. [DOI] [PubMed] [Google Scholar]
- Boroske E., Helfrich W. Magnetic anisotropy of egg lecithin membranes. Biophys J. 1978 Dec;24(3):863–868. doi: 10.1016/S0006-3495(78)85425-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowell K. J., Macdonald P. M. Surface charge response of the phosphatidylcholine head group in bilayered micelles from phosphorus and deuterium nuclear magnetic resonance. Biochim Biophys Acta. 1999 Jan 12;1416(1-2):21–30. doi: 10.1016/s0005-2736(98)00206-5. [DOI] [PubMed] [Google Scholar]
- Grasdalen H., Göran Eriksson L. E., Westman J., Ehrenberg A. Surface potential effects on metal ion binding to phosphatidylcholine membranes 31P NMR study of lanthanide and calcium ion binding to egg-yolk lecithin vesicles. Biochim Biophys Acta. 1977 Sep 5;469(2):151–162. doi: 10.1016/0005-2736(77)90177-8. [DOI] [PubMed] [Google Scholar]
- Hauser H., Phillips M. C. Conformation of the lecithin polar group in charged vesicles. Nature. 1976 Jun 3;261(5559):390–394. doi: 10.1038/261390a0. [DOI] [PubMed] [Google Scholar]
- Hauser H., Phillips M. C., Levine B. A., Williams R. J. Ion-binding to phospholipids. Interaction of calcium and lanthanide ions with phosphatidylcholine (lecithin). Eur J Biochem. 1975 Oct 1;58(1):133–144. doi: 10.1111/j.1432-1033.1975.tb02357.x. [DOI] [PubMed] [Google Scholar]
- McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
- Prosser R. S., Hwang J. S., Vold R. R. Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys J. 1998 May;74(5):2405–2418. doi: 10.1016/S0006-3495(98)77949-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prosser R. S., Volkov V. B., Shiyanovskaya I. V. Novel chelate-induced magnetic alignment of biological membranes. Biophys J. 1998 Nov;75(5):2163–2169. doi: 10.1016/S0006-3495(98)77659-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prosser R. S., Volkov V. B., Shiyanovskaya I. V. Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies. Biochem Cell Biol. 1998;76(2-3):443–451. doi: 10.1139/bcb-76-2-3-443. [DOI] [PubMed] [Google Scholar]
- Ram P., Prestegard J. H. Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. Biochim Biophys Acta. 1988 May 24;940(2):289–294. doi: 10.1016/0005-2736(88)90203-9. [DOI] [PubMed] [Google Scholar]
- Sanders C. R., 2nd, Schwonek J. P. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry. 1992 Sep 22;31(37):8898–8905. doi: 10.1021/bi00152a029. [DOI] [PubMed] [Google Scholar]
- Scholz F., Boroske E., Helfrich W. Magnetic anisotropy of lecithin membranes. A new anisotropy susceptometer. Biophys J. 1984 Mar;45(3):589–592. doi: 10.1016/S0006-3495(84)84196-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
- Struppe J., Vold R. R. Dilute bicellar solutions for structural NMR work. J Magn Reson. 1998 Dec;135(2):541–546. doi: 10.1006/jmre.1998.1605. [DOI] [PubMed] [Google Scholar]
- Tjandra N., Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 1997 Nov 7;278(5340):1111–1114. doi: 10.1126/science.278.5340.1111. [DOI] [PubMed] [Google Scholar]
- Vold R. R., Prosser R. S., Deese A. J. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR. 1997 Apr;9(3):329–335. doi: 10.1023/a:1018643312309. [DOI] [PubMed] [Google Scholar]