Abstract
The present study is an application of an approach recently developed by the authors for describing the structure of the hydrocarbon chains of lipid-bilayer membranes (LBMs) around embedded protein inclusions ( Biophys. J. 79:2867-2879). The approach is based on statistical mechanical integral equation theories developed for the study of dense liquids. First, the configurations extracted from molecular dynamics simulations of pure LBMs are used to extract the lateral density-density response function. Different pure LBMs composed of different lipid molecules were considered: dioleoyl phosphatidylcholine (DOPC), palmitoyl-oleoyl phosphatidylcholine (POPC), dipalmitoyl phosphatidylcholine (DPPC), and dimyristoyl phosphatidylcholine (DMPC). The results for the lateral density-density response function was then used as input in the integral equation theory. Numerical calculations were performed for protein inclusions of three different sizes. For the sake of simplicity, protein inclusions are represented as hard smooth cylinders excluding the lipid hydrocarbon core from a small cylinder of 2.5 A radius, corresponding roughly to one aliphatic chain, a medium cylinder of 5 A radius, corresponding to one alpha-helix, and a larger cylinder of 9 A radius, representing a small protein such as the gramicidin channel. The lipid-mediated interaction between protein inclusions was calculated using a closed-form expression for the configuration-dependent free energy. This interaction was found to be repulsive at intermediate range and attractive at short range for two small cylinders in POPC, DPPC, and DMPC bilayers, whereas it oscillates between attractive and repulsive values in DOPC bilayers. For medium size cylinders, it is again repulsive at intermediate range and attractive at short range, but for every model LBM considered here. In the case of a large cylinder, the lipid-mediated interaction was shown to be repulsive for both short and long ranges for the DOPC, POPC, and DPPC bilayers, whereas it is again repulsive and attractive for DMPC bilayers. The results indicate that the packing of the hydrocarbon chains around protein inclusions in LBMs gives rise to a generic (i.e., nonspecific) lipid-mediated interaction which favors the association of two alpha-helices and depends on the lipid composition of the membrane.
Full Text
The Full Text of this article is available as a PDF (86.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armen R. S., Uitto O. D., Feller S. E. Phospholipid component volumes: determination and application to bilayer structure calculations. Biophys J. 1998 Aug;75(2):734–744. doi: 10.1016/S0006-3495(98)77563-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. F. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994 Sep 6;73(1-2):159–180. doi: 10.1016/0009-3084(94)90180-5. [DOI] [PubMed] [Google Scholar]
- Burack W. R., Biltonen R. L. Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. Chem Phys Lipids. 1994 Sep 6;73(1-2):209–222. doi: 10.1016/0009-3084(94)90182-1. [DOI] [PubMed] [Google Scholar]
- Chiu S. W., Subramaniam S., Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. Biophys J. 1999 Apr;76(4):1929–1938. doi: 10.1016/S0006-3495(99)77352-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crane J. M., Putz G., Hall S. B. Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. Biophys J. 1999 Dec;77(6):3134–3143. doi: 10.1016/S0006-3495(99)77143-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Damodaran K. V., Merz K. M., Jr A comparison of DMPC- and DLPE-based lipid bilayers. Biophys J. 1994 Apr;66(4):1076–1087. doi: 10.1016/S0006-3495(94)80889-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gil T., Ipsen J. H., Mouritsen O. G., Sabra M. C., Sperotto M. M., Zuckermann M. J. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):245–266. doi: 10.1016/s0304-4157(98)00022-7. [DOI] [PubMed] [Google Scholar]
- Harroun T. A., Heller W. T., Weiss T. M., Yang L., Huang H. W. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J. 1999 Feb;76(2):937–945. doi: 10.1016/S0006-3495(99)77257-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husslein T., Moore P. B., Zhong Q., Newns D. M., Pattnaik P. C., Klein M. L. Molecular dynamics simulation of a hydrated diphytanol phosphatidylcholine lipid bilayer containing an alpha-helical bundle of four transmembrane domains of the influenza A virus M2 protein. Faraday Discuss. 1998;(111):201–246. doi: 10.1039/a806675b. [DOI] [PubMed] [Google Scholar]
- Lagüe P., Zuckermann M. J., Roux B. Lipid-mediated interactions between intrinsic membrane proteins: a theoretical study based on integral equations. Biophys J. 2000 Dec;79(6):2867–2879. doi: 10.1016/S0006-3495(00)76524-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lagüe P., Zuckermann M. J., Roux B. Protein inclusion in lipid membranes: a theory based on the hypernetted chain integral equation. Faraday Discuss. 1998;(111):165–246. doi: 10.1039/a807109h. [DOI] [PubMed] [Google Scholar]
- Lemmon M. A., Engelman D. M. Specificity and promiscuity in membrane helix interactions. Q Rev Biophys. 1994 May;27(2):157–218. doi: 10.1017/s0033583500004522. [DOI] [PubMed] [Google Scholar]
- Lemmon M. A., Flanagan J. M., Hunt J. F., Adair B. D., Bormann B. J., Dempsey C. E., Engelman D. M. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem. 1992 Apr 15;267(11):7683–7689. [PubMed] [Google Scholar]
- Marcelja S. Lipid-mediated protein interaction in membranes. Biochim Biophys Acta. 1976 Nov 11;455(1):1–7. doi: 10.1016/0005-2736(76)90149-8. [DOI] [PubMed] [Google Scholar]
- Marsh D., Horváth L. I. Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. Biochim Biophys Acta. 1998 Nov 10;1376(3):267–296. doi: 10.1016/s0304-4157(98)00009-4. [DOI] [PubMed] [Google Scholar]
- Marsh D. Lipid-protein interactions and heterogeneous lipid distribution in membranes. Mol Membr Biol. 1995 Jan-Mar;12(1):59–64. doi: 10.3109/09687689509038496. [DOI] [PubMed] [Google Scholar]
- May S., Ben-Shaul A. Molecular theory of lipid-protein interaction and the Lalpha-HII transition. Biophys J. 1999 Feb;76(2):751–767. doi: 10.1016/S0006-3495(99)77241-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell D. C., Litman B. J. Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys J. 1998 Feb;74(2 Pt 1):879–891. doi: 10.1016/S0006-3495(98)74011-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mouritsen O. G., Bloom M. Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct. 1993;22:145–171. doi: 10.1146/annurev.bb.22.060193.001045. [DOI] [PubMed] [Google Scholar]
- Nagle J. F. Area/lipid of bilayers from NMR. Biophys J. 1993 May;64(5):1476–1481. doi: 10.1016/S0006-3495(93)81514-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owicki J. C., McConnell H. M. Theory of protein-lipid and protein-protein interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4750–4754. doi: 10.1073/pnas.76.10.4750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owicki J. C., Springgate M. W., McConnell H. M. Theoretical study of protein--lipid interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1616–1619. doi: 10.1073/pnas.75.4.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson L. T., Edelman J., Chan S. I. Statistical mechanics of lipid membranes. Protein correlation functions and lipid ordering. Biophys J. 1984 May;45(5):863–871. doi: 10.1016/S0006-3495(84)84232-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Sintes T., Baumgärtner A. Protein attraction in membranes induced by lipid fluctuations. Biophys J. 1997 Nov;73(5):2251–2259. doi: 10.1016/S0006-3495(97)78257-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tristram-Nagle S., Petrache H. I., Nagle J. F. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J. 1998 Aug;75(2):917–925. doi: 10.1016/S0006-3495(98)77580-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watts A. Solid-state NMR approaches for studying the interaction of peptides and proteins with membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):297–318. doi: 10.1016/s0304-4157(98)00012-4. [DOI] [PubMed] [Google Scholar]
- Woolf T. B., Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996 Jan;24(1):92–114. doi: 10.1002/(SICI)1097-0134(199601)24:1<92::AID-PROT7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]