Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):305–312. doi: 10.1016/S0006-3495(01)75700-1

Two-dimensional infrared correlation spectroscopy study of the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol.

M J Paquet 1, M Laviolette 1, M Pézolet 1, M Auger 1
PMCID: PMC1301512  PMID: 11423415

Abstract

Two-dimensional infrared correlation spectroscopy (2D-IR) was used in this study to investigate the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. The influence of temperature on the aggregation has been evaluated by monitoring the intensity of a band at 1616 cm(-1), which is characteristic of aggregated proteins, and the 2D-IR analysis has been used to determine the various secondary structure components of cytochrome c involved before and during its aggregation. The 2D-IR correlation analysis clearly reveals for the first time that aggregation starts to occur between nearly native proteins, which then unfold, yielding to further aggregation of the protein. Later in the aggregation process, the formation of intermolecular bonds and unfolding of the alpha-helices appear to be simultaneous. These results lead us to propose a two-step aggregation process. Finally, the results obtained during the heating period clearly indicate that before the protein starts to aggregate, there is a loosening of the tertiary structure of cytochrome c, resulting in a decrease of the beta-sheet content and an increase of the amount of beta-turns. This study clearly demonstrates the potential of 2D-IR spectroscopy to investigate the aggregation of proteins and this technique could therefore be applied to other proteins such as those involved in fibrilogenesis.

Full Text

The Full Text of this article is available as a PDF (147.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderle G., Mendelsohn R. Thermal denaturation of globular proteins. Fourier transform-infrared studies of the amide III spectral region. Biophys J. 1987 Jul;52(1):69–74. doi: 10.1016/S0006-3495(87)83189-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
  3. Baenziger J. E., Miller K. W., McCarthy M. P., Rothschild K. J. Probing conformational changes in the nicotinic acetylcholine receptor by Fourier transform infrared difference spectroscopy. Biophys J. 1992 Apr;62(1):64–66. doi: 10.1016/S0006-3495(92)81780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryson E. A., Rankin S. E., Goormaghtigh E., Ruysschaert J. M., Watts A., Pinheiro T. J. Structure and dynamics of lipid-associated states of apocytochrome c. Eur J Biochem. 2000 Mar;267(5):1390–1396. doi: 10.1046/j.1432-1327.2000.01138.x. [DOI] [PubMed] [Google Scholar]
  5. Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
  6. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  7. Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
  8. Dong A., Huang P., Caughey W. S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990 Apr 3;29(13):3303–3308. doi: 10.1021/bi00465a022. [DOI] [PubMed] [Google Scholar]
  9. Dong A., Randolph T. W., Carpenter J. F. Entrapping intermediates of thermal aggregation in alpha-helical proteins with low concentration of guanidine hydrochloride. J Biol Chem. 2000 Sep 8;275(36):27689–27693. doi: 10.1074/jbc.M005374200. [DOI] [PubMed] [Google Scholar]
  10. Dousseau F., Pézolet M. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry. 1990 Sep 18;29(37):8771–8779. doi: 10.1021/bi00489a038. [DOI] [PubMed] [Google Scholar]
  11. Fabian H., Schultz C., Naumann D., Landt O., Hahn U., Saenger W. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. J Mol Biol. 1993 Aug 5;232(3):967–981. doi: 10.1006/jmbi.1993.1442. [DOI] [PubMed] [Google Scholar]
  12. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds. Subcell Biochem. 1994;23:329–362. doi: 10.1007/978-1-4615-1863-1_8. [DOI] [PubMed] [Google Scholar]
  13. Heimburg T., Marsh D. Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: an FTIR study. Biophys J. 1993 Dec;65(6):2408–2417. doi: 10.1016/S0006-3495(93)81299-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heimburg T., Marsh D. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes. Biophys J. 1995 Feb;68(2):536–546. doi: 10.1016/S0006-3495(95)80215-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hiramatsu K., Yang J. T. Cooperative binding of hexadecyltrimethylammonium chloride and sodium dodecyl sulfate to cytochrome c and the resultant change in protein conformation. Biochim Biophys Acta. 1983 Feb 28;743(1):106–114. doi: 10.1016/0167-4838(83)90423-5. [DOI] [PubMed] [Google Scholar]
  16. Jackson M., Haris P. I., Chapman D. Fourier transform infrared spectroscopic studies of Ca(2+)-binding proteins. Biochemistry. 1991 Oct 8;30(40):9681–9686. doi: 10.1021/bi00104a016. [DOI] [PubMed] [Google Scholar]
  17. Jackson M., Mantsch H. H., Spencer J. H. Conformation of magainin-2 and related peptides in aqueous solution and membrane environments probed by Fourier transform infrared spectroscopy. Biochemistry. 1992 Aug 18;31(32):7289–7293. doi: 10.1021/bi00147a012. [DOI] [PubMed] [Google Scholar]
  18. Jackson M., Mantsch H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol. 1995;30(2):95–120. doi: 10.3109/10409239509085140. [DOI] [PubMed] [Google Scholar]
  19. Muga A., Mantsch H. H., Surewicz W. K. Apocytochrome c interaction with phospholipid membranes studied by Fourier-transform infrared spectroscopy. Biochemistry. 1991 Mar 12;30(10):2629–2635. doi: 10.1021/bi00224a010. [DOI] [PubMed] [Google Scholar]
  20. Muga A., Mantsch H. H., Surewicz W. K. Membrane binding induces destabilization of cytochrome c structure. Biochemistry. 1991 Jul 23;30(29):7219–7224. doi: 10.1021/bi00243a025. [DOI] [PubMed] [Google Scholar]
  21. Pinheiro T. J., Elöve G. A., Watts A., Roder H. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles. Biochemistry. 1997 Oct 21;36(42):13122–13132. doi: 10.1021/bi971235z. [DOI] [PubMed] [Google Scholar]
  22. Pribić R., van Stokkum I. H., Chapman D., Haris P. I., Bloemendal M. Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra. Anal Biochem. 1993 Nov 1;214(2):366–378. doi: 10.1006/abio.1993.1511. [DOI] [PubMed] [Google Scholar]
  23. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  24. Reisdorf W. C., Jr, Krimm S. Infrared amide I' band of the coiled coil. Biochemistry. 1996 Feb 6;35(5):1383–1386. doi: 10.1021/bi951589v. [DOI] [PubMed] [Google Scholar]
  25. Rietveld A., Jordi W., de Kruijff B. Studies on the lipid dependency and mechanism of the translocation of the mitochondrial precursor protein apocytochrome c across model membranes. J Biol Chem. 1986 Mar 15;261(8):3846–3856. [PubMed] [Google Scholar]
  26. Salamon Z., Tollin G. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. I. Binding of cytochrome c to cardiolipin/phosphatidylcholine membranes in the absence of oxidase. Biophys J. 1996 Aug;71(2):848–857. doi: 10.1016/S0006-3495(96)79286-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanghera N., Pinheiro T. J. Unfolding and refolding of cytochrome c driven by the interaction with lipid micelles. Protein Sci. 2000 Jun;9(6):1194–1202. doi: 10.1110/ps.9.6.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sarver R. W., Jr, Krueger W. C. Protein secondary structure from Fourier transform infrared spectroscopy: a data base analysis. Anal Biochem. 1991 Apr;194(1):89–100. doi: 10.1016/0003-2697(91)90155-m. [DOI] [PubMed] [Google Scholar]
  29. Snel M. M., Marsh D. Membrane location of apocytochrome c and cytochrome c determined from lipid-protein spin exchange interactions by continuous wave saturation electron spin resonance. Biophys J. 1994 Aug;67(2):737–745. doi: 10.1016/S0006-3495(94)80534-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sui S. F., Wu H., Guo Y., Chen K. S. Conformational changes of melittin upon insertion into phospholipid monolayer and vesicle. J Biochem. 1994 Sep;116(3):482–487. doi: 10.1093/oxfordjournals.jbchem.a124550. [DOI] [PubMed] [Google Scholar]
  31. Surewicz W. K., Leddy J. J., Mantsch H. H. Structure, stability, and receptor interaction of cholera toxin as studied by Fourier-transform infrared spectroscopy. Biochemistry. 1990 Sep 4;29(35):8106–8111. doi: 10.1021/bi00487a017. [DOI] [PubMed] [Google Scholar]
  32. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  33. Surewicz W. K., Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 1988 Jan 29;952(2):115–130. doi: 10.1016/0167-4838(88)90107-0. [DOI] [PubMed] [Google Scholar]
  34. Takano T., Dickerson R. E. Conformation change of cytochrome c. I. Ferrocytochrome c structure refined at 1.5 A resolution. J Mol Biol. 1981 Nov 25;153(1):79–94. doi: 10.1016/0022-2836(81)90528-3. [DOI] [PubMed] [Google Scholar]
  35. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
  36. Zhang F., Rowe E. S. Calorimetric studies of the interactions of cytochrome c with dioleoylphosphatidylglycerol extruded vesicles: ionic strength effects. Biochim Biophys Acta. 1994 Aug 3;1193(2):219–225. doi: 10.1016/0005-2736(94)90156-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES