Abstract
The molecular changes during the photoreaction of halorhodopsin from Natronobacterium pharaonis have been monitored by low-temperature static and by time-resolved step-scan Fourier transform infrared difference spectroscopy. In the low-temperature L spectrum anions only influence a band around 1650 cm(-1), tentatively assigned to the C=N stretch of the protonated Schiff base of L. The analysis of the time-resolved spectra allows to identify the four states: K, L(1), L(2), and O. Between L(1) and L(2), only the apoprotein undergoes alterations. The O state is characterized by an all-trans chromophore and by rather large amide I spectral changes. Because in our analysis the intermediate containing O is in equilibrium with a state indistinguishable from L(2), we are unable to identify an N-like state. At very high chloride concentrations (>5 M), we observe a branching of the photocycle from L(2) directly back to the dark state, and we provide evidence for direct back-isomerization from L(2). This branching leads to the reported reduction of transport activity at such high chloride concentrations. We interpret the L(1) to L(2) transition as an accessibility change of the anion from the extracellular to the cytosolic side, and the large amide I bands in O as an indication for opening of the cytosolic channel from the Schiff base toward the cytosolic surface and/or as indication for changes of the binding constant of the release site.
Full Text
The Full Text of this article is available as a PDF (307.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames J. B., Raap J., Lugtenburg J., Mathies R. A. Resonance Raman study of halorhodopsin photocycle kinetics, chromophore structure, and chloride-pumping mechanism. Biochemistry. 1992 Dec 22;31(50):12546–12554. doi: 10.1021/bi00165a002. [DOI] [PubMed] [Google Scholar]
- Bamberg E., Tittor J., Oesterhelt D. Light-driven proton or chloride pumping by halorhodopsin. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):639–643. doi: 10.1073/pnas.90.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bousché O., Spudich E. N., Spudich J. L., Rothschild K. J. Conformational changes in sensory rhodopsin I: similarities and differences with bacteriorhodopsin, halorhodopsin, and rhodopsin. Biochemistry. 1991 Jun 4;30(22):5395–5400. doi: 10.1021/bi00236a010. [DOI] [PubMed] [Google Scholar]
- Braiman M. S., Walter T. J., Briercheck D. M. Infrared spectroscopic detection of light-induced change in chloride-arginine interaction in halorhodopsin. Biochemistry. 1994 Feb 22;33(7):1629–1635. doi: 10.1021/bi00173a003. [DOI] [PubMed] [Google Scholar]
- Brown L. S., Dioumaev A. K., Needleman R., Lanyi J. K. Local-access model for proton transfer in bacteriorhodopsin. Biochemistry. 1998 Mar 17;37(11):3982–3993. doi: 10.1021/bi9728396. [DOI] [PubMed] [Google Scholar]
- Chizhov I., Chernavskii D. S., Engelhard M., Mueller K. H., Zubov B. V., Hess B. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J. 1996 Nov;71(5):2329–2345. doi: 10.1016/S0006-3495(96)79475-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chon Y. S., Kandori H., Sasaki J., Lanyi J. K., Needleman R., Maeda A. Existence of two L photointermediates of halorhodopsin from Halobacterium salinarium, differing in their protein and water FTIR bands. Biochemistry. 1999 Jul 20;38(29):9449–9455. doi: 10.1021/bi9903042. [DOI] [PubMed] [Google Scholar]
- Dioumaev A. K., Braiman M. S. Nano- and microsecond time-resolved FTIR spectroscopy of the halorhodopsin photocycle. Photochem Photobiol. 1997 Dec;66(6):755–763. doi: 10.1111/j.1751-1097.1997.tb03220.x. [DOI] [PubMed] [Google Scholar]
- Duschl A., Lanyi J. K., Zimányi L. Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. J Biol Chem. 1990 Jan 25;265(3):1261–1267. [PubMed] [Google Scholar]
- Fahmy K., Siebert F., Tavan P. Structural investigation of bacteriorhodopsin and some of its photoproducts by polarized Fourier transform infrared spectroscopic methods-difference spectroscopy and photoselection. Biophys J. 1991 Nov;60(5):989–1001. doi: 10.1016/S0006-3495(91)82136-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fodor S. P., Pollard W. T., Gebhard R., van den Berg E. M., Lugtenburg J., Mathies R. A. Bacteriorhodopsin's L550 intermediate contains a C14-C15 s-trans-retinal chromophore. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2156–2160. doi: 10.1073/pnas.85.7.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerscher S., Mylrajan M., Hildebrandt P., Baron M. H., Müller R., Engelhard M. Chromophore-anion interactions in halorhodopsin from Natronobacterium pharaonis probed by time-resolved resonance Raman spectroscopy. Biochemistry. 1997 Sep 9;36(36):11012–11020. doi: 10.1021/bi970722b. [DOI] [PubMed] [Google Scholar]
- Gerwert K., Siebert F. Evidence for light-induced 13-cis, 14-s-cis isomerization in bacteriorhodopsin obtained by FTIR difference spectroscopy using isotopically labelled retinals. EMBO J. 1986 Apr;5(4):805–811. doi: 10.1002/j.1460-2075.1986.tb04285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haupts U., Tittor J., Bamberg E., Oesterhelt D. General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochemistry. 1997 Jan 7;36(1):2–7. doi: 10.1021/bi962014g. [DOI] [PubMed] [Google Scholar]
- He Y., Krebs M. P., Fischer W. B., Khorana H. G., Rothschild K. J. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. Biochemistry. 1993 Mar 9;32(9):2282–2290. doi: 10.1021/bi00060a021. [DOI] [PubMed] [Google Scholar]
- Hessling B., Souvignier G., Gerwert K. A model-independent approach to assigning bacteriorhodopsin's intramolecular reactions to photocycle intermediates. Biophys J. 1993 Nov;65(5):1929–1941. doi: 10.1016/S0006-3495(93)81264-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyde M. E., Gill D., Kilponen R. G., Rimai L. Raman spectra of Schiff bases of retinal (models of visual photoreceptors). J Am Chem Soc. 1971 Dec 15;93(25):6776–6780. doi: 10.1021/ja00754a012. [DOI] [PubMed] [Google Scholar]
- Hohenfeld I. P., Wegener A. A., Engelhard M. Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. FEBS Lett. 1999 Jan 15;442(2-3):198–202. doi: 10.1016/s0014-5793(98)01659-7. [DOI] [PubMed] [Google Scholar]
- Kalaidzidis I. V., Kalaidzidis Y. L., Kaulen A. D. Flash-induced voltage changes in halorhodopsin from Natronobacterium pharaonis. FEBS Lett. 1998 May 1;427(1):59–63. doi: 10.1016/s0014-5793(98)00394-9. [DOI] [PubMed] [Google Scholar]
- Kolbe M., Besir H., Essen L. O., Oesterhelt D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science. 2000 May 26;288(5470):1390–1396. doi: 10.1126/science.288.5470.1390. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K., Duschl A., Hatfield G. W., May K., Oesterhelt D. The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. J Biol Chem. 1990 Jan 25;265(3):1253–1260. [PubMed] [Google Scholar]
- Losi A., Wegener A. A., Engelhard M., Gärtner W., Braslavsky S. E. Time-resolved absorption and photothermal measurements with recombinant sensory rhodopsin II from Natronobacterium pharaonis. Biophys J. 1999 Dec;77(6):3277–3286. doi: 10.1016/S0006-3495(99)77158-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludmann K., Ibron G., Lanyi J. K., Váró G. Charge motions during the photocycle of pharaonis halorhodopsin. Biophys J. 2000 Feb;78(2):959–966. doi: 10.1016/S0006-3495(00)76653-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukohata Y., Ihara K., Tamura T., Sugiyama Y. Halobacterial rhodopsins. J Biochem. 1999 Apr;125(4):649–657. doi: 10.1093/oxfordjournals.jbchem.a022332. [DOI] [PubMed] [Google Scholar]
- Nagel G., Kelety B., Möckel B., Büldt G., Bamberg E. Voltage dependence of proton pumping by bacteriorhodopsin is regulated by the voltage-sensitive ratio of M1 to M2. Biophys J. 1998 Jan;74(1):403–412. doi: 10.1016/S0006-3495(98)77797-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuno D., Asaumi M., Muneyuki E. Chloride concentration dependency of the electrogenic activity of halorhodopsin. Biochemistry. 1999 Apr 27;38(17):5422–5429. doi: 10.1021/bi9826456. [DOI] [PubMed] [Google Scholar]
- Pande C., Lanyi J. K., Callender R. H. Effects of various anions on the Raman spectrum of halorhodopsin. Biophys J. 1989 Mar;55(3):425–431. doi: 10.1016/S0006-3495(89)82836-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polland H. J., Franz M. A., Zinth W., Kaiser W., Hegemann P., Oesterhelt D. Picosecond events in the photochemical cycle of the light-driven chloride-pump halorhodopsin. Biophys J. 1985 Jan;47(1):55–59. doi: 10.1016/S0006-3495(85)83876-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothschild K. J., Bousché O., Braiman M. S., Hasselbacher C. A., Spudich J. L. Fourier transform infrared study of the halorhodopsin chloride pump. Biochemistry. 1988 Apr 5;27(7):2420–2424. doi: 10.1021/bi00407a026. [DOI] [PubMed] [Google Scholar]
- Rödig C., Chizhov I., Weidlich O., Siebert F. Time-resolved step-scan Fourier transform infrared spectroscopy reveals differences between early and late M intermediates of bacteriorhodopsin. Biophys J. 1999 May;76(5):2687–2701. doi: 10.1016/S0006-3495(99)77421-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüdiger M., Haupts U., Gerwert K., Oesterhelt D. Chemical reconstitution of a chloride pump inactivated by a single point mutation. EMBO J. 1995 Apr 18;14(8):1599–1606. doi: 10.1002/j.1460-2075.1995.tb07148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki J., Brown L. S., Chon Y. S., Kandori H., Maeda A., Needleman R., Lanyi J. K. Conversion of bacteriorhodopsin into a chloride ion pump. Science. 1995 Jul 7;269(5220):73–75. doi: 10.1126/science.7604281. [DOI] [PubMed] [Google Scholar]
- Scharf B., Engelhard M. Blue halorhodopsin from Natronobacterium pharaonis: wavelength regulation by anions. Biochemistry. 1994 May 31;33(21):6387–6393. doi: 10.1021/bi00187a002. [DOI] [PubMed] [Google Scholar]
- Siebert F., Mäntele W. Investigation of the primary photochemistry of bacteriorhodopsin by low-temperature Fourier-transform infrared spectroscopy. Eur J Biochem. 1983 Feb 15;130(3):565–573. doi: 10.1111/j.1432-1033.1983.tb07187.x. [DOI] [PubMed] [Google Scholar]
- Smith S. O., Lugtenburg J., Mathies R. A. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. J Membr Biol. 1985;85(2):95–109. doi: 10.1007/BF01871263. [DOI] [PubMed] [Google Scholar]
- Tittor J., Haupts U., Haupts C., Oesterhelt D., Becker A., Bamberg E. Chloride and proton transport in bacteriorhodopsin mutant D85T: different modes of ion translocation in a retinal protein. J Mol Biol. 1997 Aug 22;271(3):405–416. doi: 10.1006/jmbi.1997.1204. [DOI] [PubMed] [Google Scholar]
- Vogel R., Fan G. B., Sheves M., Siebert F. Salt dependence of the formation and stability of the signaling state in G protein-coupled receptors: evidence for the involvement of the Hofmeister effect. Biochemistry. 2001 Jan 16;40(2):483–493. doi: 10.1021/bi001855r. [DOI] [PubMed] [Google Scholar]
- Váró G., Brown L. S., Needleman R., Lanyi J. K. Proton transport by halorhodopsin. Biochemistry. 1996 May 28;35(21):6604–6611. doi: 10.1021/bi9601159. [DOI] [PubMed] [Google Scholar]
- Váró G., Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry. 1995 Nov 7;34(44):14490–14499. doi: 10.1021/bi00044a027. [DOI] [PubMed] [Google Scholar]
- Váró G., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry. 1995 Nov 7;34(44):14500–14507. doi: 10.1021/bi00044a028. [DOI] [PubMed] [Google Scholar]
- Váró G., Zimányi L., Fan X., Sun L., Needleman R., Lanyi J. K. Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J. 1995 May;68(5):2062–2072. doi: 10.1016/S0006-3495(95)80385-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter T. J., Braiman M. S. Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base. Biochemistry. 1994 Feb 22;33(7):1724–1733. doi: 10.1021/bi00173a015. [DOI] [PubMed] [Google Scholar]
- Zimányi L., Ormos P., Lanyi J. K. Low-temperature photoreactions of halorhodopsin. 1. Detection of conformational substates of the chromoprotein. Biochemistry. 1989 Feb 21;28(4):1656–1661. doi: 10.1021/bi00430a034. [DOI] [PubMed] [Google Scholar]