Abstract
Photosystem I (PS-I) contains a small fraction of chlorophylls (Chls) that absorb at wavelengths longer than the primary electron donor P700. The total number of these long wavelength Chls and their spectral distribution are strongly species dependent. In this contribution we present room temperature time-resolved fluorescence data of five PS-I core complexes that contain different amounts of these long wavelength Chls, i.e., monomeric and trimeric photosystem I particles of the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus, and Spirulina platensis, which were obtained using a synchroscan streak camera. Global analysis of the data reveals considerable differences between the equilibration components (3.4-15 ps) and trapping components (23-50 ps) of the various PS-I complexes. We show that a relatively simple compartmental model can be used to reproduce all of the observed kinetics and demonstrate that the large kinetic differences are purely the result of differences in the long wavelength Chl content. This procedure not only offers rate constants of energy transfer between and of trapping from the compartments, but also well-defined room temperature emission spectra of the individual Chl pools. A pool of red shifted Chls absorbing around 702 nm and emitting around 712 nm was found to be a common feature of all studied PS-I particles. These red shifted Chls were found to be located neither very close to P700 nor very remote from P700. In Synechococcus trimeric and Spirulina monomeric PS-I cores, a second pool of red Chls was present which absorbs around 708 nm, and emits around 721 nm. In Spirulina trimeric PS-I cores an even more red shifted second pool of red Chls was found, absorbing around 715 nm and emitting at 730 nm.
Full Text
The Full Text of this article is available as a PDF (178.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Byrdin M., Rimke I., Schlodder E., Stehlik D., Roelofs T. A. Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J. 2000 Aug;79(2):992–1007. doi: 10.1016/S0006-3495(00)76353-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming G. R., van Grondelle R. Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr Opin Struct Biol. 1997 Oct;7(5):738–748. doi: 10.1016/s0959-440x(97)80086-3. [DOI] [PubMed] [Google Scholar]
- Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hastings G., Kleinherenbrink F. A., Lin S., Blankenship R. E. Time-resolved fluorescence and absorption spectroscopy of photosystem I. Biochemistry. 1994 Mar 22;33(11):3185–3192. doi: 10.1021/bi00177a007. [DOI] [PubMed] [Google Scholar]
- Hastings G., Reed L. J., Lin S., Blankenship R. E. Excited state dynamics in photosystem I: effects of detergent and excitation wavelength. Biophys J. 1995 Nov;69(5):2044–2055. doi: 10.1016/S0006-3495(95)80074-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoff W. D., van Stokkum I. H., van Ramesdonk H. J., van Brederode M. E., Brouwer A. M., Fitch J. C., Meyer T. E., van Grondelle R., Hellingwerf K. J. Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1994 Oct;67(4):1691–1705. doi: 10.1016/S0006-3495(94)80643-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karapetyan N. V., Dorra D., Schweitzer G., Bezsmertnaya I. N., Holzwarth A. R. Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry. 1997 Nov 11;36(45):13830–13837. doi: 10.1021/bi970386z. [DOI] [PubMed] [Google Scholar]
- Karapetyan N. V., Holzwarth A. R., Rögner M. The photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Lett. 1999 Nov 5;460(3):395–400. doi: 10.1016/s0014-5793(99)01352-6. [DOI] [PubMed] [Google Scholar]
- Klukas O., Schubert W. D., Jordan P., Krau N., Fromme P., Witt H. T., Saenger W. Localization of two phylloquinones, QK and QK', in an improved electron density map of photosystem I at 4-A resolution. J Biol Chem. 1999 Mar 12;274(11):7361–7367. doi: 10.1074/jbc.274.11.7361. [DOI] [PubMed] [Google Scholar]
- Krauss N., Schubert W. D., Klukas O., Fromme P., Witt H. T., Saenger W. Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol. 1996 Nov;3(11):965–973. doi: 10.1038/nsb1196-965. [DOI] [PubMed] [Google Scholar]
- Kruip J., Boekema E. J., Bald D., Boonstra A. F., Rögner M. Isolation and structural characterization of monomeric and trimeric photosystem I complexes (P700.FA/FB and P700.FX) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem. 1993 Nov 5;268(31):23353–23360. [PubMed] [Google Scholar]
- Kruip J., Karapetyan N. V., Terekhova I. V., Rögner M. In vitro oligomerization of a membrane protein complex. liposome-based reconstitution of trimeric photosystem I from isolated monomers. J Biol Chem. 1999 Jun 25;274(26):18181–18188. doi: 10.1074/jbc.274.26.18181. [DOI] [PubMed] [Google Scholar]
- Laible P. D., Zipfel W., Owens T. G. Excited state dynamics in chlorophyll-based antennae: the role of transfer equilibrium. Biophys J. 1994 Mar;66(3 Pt 1):844–860. doi: 10.1016/s0006-3495(94)80861-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limantara L., Fujii R., Zhang J. P., Kakuno T., Hara H., Kawamori A., Yagura T., Cogdell R. J., Koyama Y. Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides. Biochemistry. 1998 Dec 15;37(50):17469–17486. doi: 10.1021/bi981803q. [DOI] [PubMed] [Google Scholar]
- Melkozernov A. N., Lin S., Blankenship R. E. Excitation dynamics and heterogeneity of energy equilibration in the core antenna of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry. 2000 Feb 15;39(6):1489–1498. doi: 10.1021/bi991644q. [DOI] [PubMed] [Google Scholar]
- Mühlenhoff U., Haehnel W., Witt H., Herrmann R. G. Genes encoding eleven subunits of photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene. 1993 May 15;127(1):71–78. doi: 10.1016/0378-1119(93)90618-d. [DOI] [PubMed] [Google Scholar]
- Peterman E. J., Wenk S. O., Pullerits T., Pâlsson L. O., van Grondelle R., Dekker J. P., Rögner M., van Amerongen H. Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b6f of Synechocystis PCC6803. Biophys J. 1998 Jul;75(1):389–398. doi: 10.1016/S0006-3495(98)77523-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pålsson L. O., Flemming C., Gobets B., van Grondelle R., Dekker J. P., Schlodder E. Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J. 1998 May;74(5):2611–2622. doi: 10.1016/S0006-3495(98)77967-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Royall D. R., Mahurin R. K., True J. E., Anderson B., Brock I. P., 3rd, Freeburger L., Miller A. Executive impairment among the functionally dependent: comparisons between schizophrenic and elderly subjects. Am J Psychiatry. 1993 Dec;150(12):1813–1819. doi: 10.1176/ajp.150.12.1813. [DOI] [PubMed] [Google Scholar]
- Savikhin S., Xu W., Soukoulis V., Chitnis P. R., Struve W. S. Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. Biophys J. 1999 Jun;76(6):3278–3288. doi: 10.1016/S0006-3495(99)77480-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubert W. D., Klukas O., Krauss N., Saenger W., Fromme P., Witt H. T. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. J Mol Biol. 1997 Oct 10;272(5):741–769. doi: 10.1006/jmbi.1997.1269. [DOI] [PubMed] [Google Scholar]
- Shubin V. V., Bezsmertnaya I. N., Karapetyan N. V. Isolation from Spirulina membranes of two photosystem I-type complexes, one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. FEBS Lett. 1992 Sep 14;309(3):340–342. doi: 10.1016/0014-5793(92)80803-o. [DOI] [PubMed] [Google Scholar]
- Trinkunas G., Holzwarth A. R. Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes. Biophys J. 1994 Feb;66(2 Pt 1):415–429. doi: 10.1016/s0006-3495(94)80792-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valkunas L., Trinkunas G., Liuolia V., van Grondelle R. Nonlinear annihilation of excitations in photosynthetic systems. Biophys J. 1995 Sep;69(3):1117–1129. doi: 10.1016/S0006-3495(95)79986-6. [DOI] [PMC free article] [PubMed] [Google Scholar]