Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):425–434. doi: 10.1016/S0006-3495(01)75710-4

Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from (13)C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion.

S Tuzi 1, J Hasegawa 1, R Kawaminami 1, A Naito 1, H Saitô 1
PMCID: PMC1301522  PMID: 11423425

Abstract

13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.

Full Text

The Full Text of this article is available as a PDF (167.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chazin W. J., Rance M., Wright P. E. Complete assignment of lysine resonances in 1H NMR spectra of proteins as probes of surface structure and dynamics. FEBS Lett. 1987 Sep 28;222(1):109–114. doi: 10.1016/0014-5793(87)80201-6. [DOI] [PubMed] [Google Scholar]
  2. Cross T. A. Solid-state nuclear magnetic resonance characterization of gramicidin channel structure. Methods Enzymol. 1997;289:672–696. doi: 10.1016/s0076-6879(97)89070-2. [DOI] [PubMed] [Google Scholar]
  3. Edman K., Nollert P., Royant A., Belrhali H., Pebay-Peyroula E., Hajdu J., Neutze R., Landau E. M. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature. 1999 Oct 21;401(6755):822–826. doi: 10.1038/44623. [DOI] [PubMed] [Google Scholar]
  4. Essen L., Siegert R., Lehmann W. D., Oesterhelt D. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11673–11678. doi: 10.1073/pnas.95.20.11673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferrand M., Dianoux A. J., Petry W., Zaccaï G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fitter J., Verclas S. A., Lechner R. E., Seelert H., Dencher N. A. Function and picosecond dynamics of bacteriorhodopsin in purple membrane at different lipidation and hydration. FEBS Lett. 1998 Aug 21;433(3):321–325. doi: 10.1016/s0014-5793(98)00938-7. [DOI] [PubMed] [Google Scholar]
  7. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  8. Heberle J, Fitter J, Sass HJ, Buldt G. Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys Chem. 2000 Jul 15;85(2-3):229–248. doi: 10.1016/s0301-4622(99)00154-4. [DOI] [PubMed] [Google Scholar]
  9. Jacob J., Baker B., Bryant R. G., Cafiso D. S. Distance estimates from paramagnetic enhancements of nuclear relaxation in linear and flexible model peptides. Biophys J. 1999 Aug;77(2):1086–1092. doi: 10.1016/S0006-3495(99)76958-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawase Y., Tanio M., Kira A., Yamaguchi S., Tuzi S., Naito A., Kataoka M., Lanyi J. K., Needleman R., Saitô H. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Biochemistry. 2000 Nov 28;39(47):14472–14480. doi: 10.1021/bi0015820. [DOI] [PubMed] [Google Scholar]
  11. Kimura S., Naito A., Tuzi S., Saitô H. A (13)C NMR study on [3-(13)C]-, [1-(13)C]Ala-, or [1-(13)C]Val-labeled transmembrane peptides of bacteriorhodopsin in lipid bilayers: insertion, rigid-body motions, and local conformational fluctuations at ambient temperature. Biopolymers. 2001 Jan;58(1):78–88. doi: 10.1002/1097-0282(200101)58:1<78::AID-BIP80>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  12. Kimura Y., Vassylyev D. G., Miyazawa A., Kidera A., Matsushima M., Mitsuoka K., Murata K., Hirai T., Fujiyoshi Y. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature. 1997 Sep 11;389(6647):206–211. doi: 10.1038/38323. [DOI] [PubMed] [Google Scholar]
  13. Lanyi J. K. Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J Biol Chem. 1997 Dec 12;272(50):31209–31212. doi: 10.1074/jbc.272.50.31209. [DOI] [PubMed] [Google Scholar]
  14. Lanyi J. K. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim Biophys Acta. 1993 Dec 7;1183(2):241–261. doi: 10.1016/0005-2728(93)90226-6. [DOI] [PubMed] [Google Scholar]
  15. Luecke H. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Biochim Biophys Acta. 2000 Aug 30;1460(1):133–156. doi: 10.1016/s0005-2728(00)00135-3. [DOI] [PubMed] [Google Scholar]
  16. Luecke H., Schobert B., Cartailler J. P., Richter H. T., Rosengarth A., Needleman R., Lanyi J. K. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J Mol Biol. 2000 Jul 28;300(5):1237–1255. doi: 10.1006/jmbi.2000.3884. [DOI] [PubMed] [Google Scholar]
  17. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science. 1999 Oct 8;286(5438):255–261. doi: 10.1126/science.286.5438.255. [DOI] [PubMed] [Google Scholar]
  18. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
  19. Marassi F. M., Opella S. J. NMR structural studies of membrane proteins. Curr Opin Struct Biol. 1998 Oct;8(5):640–648. doi: 10.1016/s0959-440x(98)80157-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mathies R. A., Lin S. W., Ames J. B., Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem. 1991;20:491–518. doi: 10.1146/annurev.bb.20.060191.002423. [DOI] [PubMed] [Google Scholar]
  21. Mitra A. K., Stroud R. M. High sensitivity electron diffraction analysis. A study of divalent cation binding to purple membrane. Biophys J. 1990 Feb;57(2):301–311. doi: 10.1016/S0006-3495(90)82532-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mitsuoka K., Hirai T., Murata K., Miyazawa A., Kidera A., Kimura Y., Fujiyoshi Y. The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution. J Mol Biol. 1999 Feb 26;286(3):861–882. doi: 10.1006/jmbi.1998.2529. [DOI] [PubMed] [Google Scholar]
  23. Needleman R., Chang M., Ni B., Váró G., Fornés J., White S. H., Lanyi J. K. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base. J Biol Chem. 1991 Jun 25;266(18):11478–11484. [PubMed] [Google Scholar]
  24. ONISHI H., MCCANCE E., GIBBONS N. E. A SYNTHETIC MEDIUM FOR EXTREMELY HALOPHILIC BACTERIA. Can J Microbiol. 1965 Apr;11:365–373. doi: 10.1139/m65-044. [DOI] [PubMed] [Google Scholar]
  25. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  26. Ovchinnikov YuA Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett. 1982 Nov 8;148(2):179–191. doi: 10.1016/0014-5793(82)80805-3. [DOI] [PubMed] [Google Scholar]
  27. Pebay-Peyroula E., Neutze R., Landau E. M. Lipidic cubic phase crystallization of bacteriorhodopsin and cryotrapping of intermediates: towards resolving a revolving photocycle. Biochim Biophys Acta. 2000 Aug 30;1460(1):119–132. doi: 10.1016/s0005-2728(00)00134-1. [DOI] [PubMed] [Google Scholar]
  28. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  29. Renthal R., Dawson N., Tuley J., Horowitz P. Constraints on the flexibility of bacteriorhodopsin's carboxyl-terminal tail at the purple membrane surface. Biochemistry. 1983 Jan 4;22(1):5–12. doi: 10.1021/bi00270a601. [DOI] [PubMed] [Google Scholar]
  30. Richter H. T., Brown L. S., Needleman R., Lanyi J. K. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry. 1996 Apr 2;35(13):4054–4062. doi: 10.1021/bi952883q. [DOI] [PubMed] [Google Scholar]
  31. Saitô H., Tuzi S., Yamaguchi S., Tanio M., Naito A. Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. Biochim Biophys Acta. 2000 Aug 30;1460(1):39–48. doi: 10.1016/s0005-2728(00)00128-6. [DOI] [PubMed] [Google Scholar]
  32. Sass H. J., Büldt G., Gessenich R., Hehn D., Neff D., Schlesinger R., Berendzen J., Ormos P. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature. 2000 Aug 10;406(6796):649–653. doi: 10.1038/35020607. [DOI] [PubMed] [Google Scholar]
  33. Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
  34. Tanio M., Tuzi S., Yamaguchi S., Kawaminami R., Naito A., Needleman R., Lanyi J. K., Saitô H. Conformational changes of bacteriorhodopsin along the proton-conduction chain as studied with (13)C NMR of [3-(13)C]Ala-labeled protein: arg(82) may function as an information mediator. Biophys J. 1999 Sep;77(3):1577–1584. doi: 10.1016/S0006-3495(99)77005-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tuzi S., Naito A., Saitô H. 13C NMR study on conformation and dynamics of the transmembrane alpha-helices, loops, and C-terminus of [3-13C]Ala-labeled bacteriorhodopsin. Biochemistry. 1994 Dec 20;33(50):15046–15052. doi: 10.1021/bi00254a013. [DOI] [PubMed] [Google Scholar]
  36. Tuzi S., Naito A., Saitô H. Temperature-dependent conformational change of bacteriorhodopsin as studied by solid-state 13C NMR. Eur J Biochem. 1996 Jul 15;239(2):294–301. doi: 10.1111/j.1432-1033.1996.0294u.x. [DOI] [PubMed] [Google Scholar]
  37. Tuzi S., Yamaguchi S., Naito A., Needleman R., Lanyi J. K., Saitô H. Conformation and dynamics of [3-13C]Ala- labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance. Biochemistry. 1996 Jun 11;35(23):7520–7527. doi: 10.1021/bi960274s. [DOI] [PubMed] [Google Scholar]
  38. Tuzi S., Yamaguchi S., Tanio M., Konishi H., Inoue S., Naito A., Needleman R., Lanyi J. K., Saitô H. Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Biophys J. 1999 Mar;76(3):1523–1531. doi: 10.1016/S0006-3495(99)77311-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamaguchi S., Tuzi S., Seki T., Tanio M., Needleman R., Lanyi J. K., Naito A., Saitô H. Stability of the C-terminal alpha-helical domain of bacteriorhodopsin that protrudes from the membrane surface, as studied by high-resolution solid-state 13C NMR. J Biochem. 1998 Jan;123(1):78–86. doi: 10.1093/oxfordjournals.jbchem.a021919. [DOI] [PubMed] [Google Scholar]
  40. Yamaguchi S., Tuzi S., Tanio M., Naito A., Lanyi J. K., Needleman R., Saitô H. Irreversible conformational change of bacterio-opsin induced by binding of retinal during its reconstitution to bacteriorhodopsin, as studied by (13)C NMR. J Biochem. 2000 May;127(5):861–869. doi: 10.1093/oxfordjournals.jbchem.a022680. [DOI] [PubMed] [Google Scholar]
  41. Yamaguchi S., Tuzi S., Yonebayashi K., Naito A., Needleman R., Lanyi J. K., Saitô H. Surface dynamics of bacteriorhodopsin as revealed by (13)C NMR studies on [(13)C]Ala-labeled proteins: detection of millisecond or microsecond motions in interhelical loops and C-terminal alpha-helix. J Biochem. 2001 Mar;129(3):373–382. doi: 10.1093/oxfordjournals.jbchem.a002867. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES