Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):516–525. doi: 10.1016/S0006-3495(01)75718-9

Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein.

G M Cereghetti 1, A Schweiger 1, R Glockshuber 1, S Van Doorslaer 1
PMCID: PMC1301530  PMID: 11423433

Abstract

Transmissible spongiform encephalopathies in mammals are believed to be caused by scrapie form of prion protein (PrP(Sc)), an abnormal, oligomeric isoform of the monomeric cellular prion protein (PrP(C)). One of the proposed functions of PrP(C) in vivo is a Cu(II) binding activity. Previous studies revealed that Cu(2+) binds to the unstructured N-terminal PrP(C) segment (residues 23-120) through conserved histidine residues. Here we analyzed the Cu(II) binding properties of full-length murine PrP(C) (mPrP), of its isolated C-terminal domain mPrP(121-231) and of the N-terminal fragment mPrP(58-91) in the range of pH 3-8 with electron paramagnetic resonance spectroscopy. We find that the C-terminal domain, both in its isolated form and in the context of the full-length protein, is capable of interacting with Cu(2+). Three Cu(II) coordination types are observed for the C-terminal domain. The N-terminal segment mPrP(58-91) binds Cu(2+) only at pH values above 5.0, whereas both mPrP(121-231) and mPrP(23-231) already show identical Cu(II) coordination in the pH range 3-5. As the Cu(2+)-binding N-terminal segment 58-91 is not required for prion propagation, our results open the possibility that Cu(2+) ions bound to the C-terminal domain are involved in the replication of prions, and provide the basis for further analytical studies on the specificity of Cu(II) binding by PrP.

Full Text

The Full Text of this article is available as a PDF (125.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper T., Cramp W. A., Haig D. A., Clarke M. C. Does the agent of scrapie replicate without nucleic acid? Nature. 1967 May 20;214(5090):764–766. doi: 10.1038/214764a0. [DOI] [PubMed] [Google Scholar]
  2. Aronoff-Spencer E., Burns C. S., Avdievich N. I., Gerfen G. J., Peisach J., Antholine W. E., Ball H. L., Cohen F. E., Prusiner S. B., Millhauser G. L. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry. 2000 Nov 14;39(45):13760–13771. doi: 10.1021/bi001472t. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown D. R., Besinger A. Prion protein expression and superoxide dismutase activity. Biochem J. 1998 Sep 1;334(Pt 2):423–429. doi: 10.1042/bj3340423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown D. R., Mohn C. M. Astrocytic glutamate uptake and prion protein expression. Glia. 1999 Feb 1;25(3):282–292. doi: 10.1002/(sici)1098-1136(19990201)25:3<282::aid-glia8>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  5. Brown D. R. Prion protein expression aids cellular uptake and veratridine-induced release of copper. J Neurosci Res. 1999 Dec 1;58(5):717–725. [PubMed] [Google Scholar]
  6. Brown D. R., Qin K., Herms J. W., Madlung A., Manson J., Strome R., Fraser P. E., Kruck T., von Bohlen A., Schulz-Schaeffer W. The cellular prion protein binds copper in vivo. Nature. 1997 Dec 18;390(6661):684–687. doi: 10.1038/37783. [DOI] [PubMed] [Google Scholar]
  7. Brown D. R., Schmidt B., Kretzschmar H. A. Effects of copper on survival of prion protein knockout neurons and glia. J Neurochem. 1998 Apr;70(4):1686–1693. doi: 10.1046/j.1471-4159.1998.70041686.x. [DOI] [PubMed] [Google Scholar]
  8. Brown D. R., Schmidt B., Kretzschmar H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature. 1996 Mar 28;380(6572):345–347. doi: 10.1038/380345a0. [DOI] [PubMed] [Google Scholar]
  9. Brown D. R., Schulz-Schaeffer W. J., Schmidt B., Kretzschmar H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol. 1997 Jul;146(1):104–112. doi: 10.1006/exnr.1997.6505. [DOI] [PubMed] [Google Scholar]
  10. Brown D. R., Wong B. S., Hafiz F., Clive C., Haswell S. J., Jones I. M. Normal prion protein has an activity like that of superoxide dismutase. Biochem J. 1999 Nov 15;344(Pt 1):1–5. [PMC free article] [PubMed] [Google Scholar]
  11. Büeler H., Fischer M., Lang Y., Bluethmann H., Lipp H. P., DeArmond S. J., Prusiner S. B., Aguet M., Weissmann C. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 1992 Apr 16;356(6370):577–582. doi: 10.1038/356577a0. [DOI] [PubMed] [Google Scholar]
  12. Donne D. G., Viles J. H., Groth D., Mehlhorn I., James T. L., Cohen F. E., Prusiner S. B., Wright P. E., Dyson H. J. Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13452–13457. doi: 10.1073/pnas.94.25.13452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  14. Griffith J. S. Self-replication and scrapie. Nature. 1967 Sep 2;215(5105):1043–1044. doi: 10.1038/2151043a0. [DOI] [PubMed] [Google Scholar]
  15. Herms J., Tings T., Gall S., Madlung A., Giese A., Siebert H., Schürmann P., Windl O., Brose N., Kretzschmar H. Evidence of presynaptic location and function of the prion protein. J Neurosci. 1999 Oct 15;19(20):8866–8875. doi: 10.1523/JNEUROSCI.19-20-08866.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hornemann S., Glockshuber R. A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6010–6014. doi: 10.1073/pnas.95.11.6010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hornshaw M. P., McDermott J. R., Candy J. M. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun. 1995 Feb 15;207(2):621–629. doi: 10.1006/bbrc.1995.1233. [DOI] [PubMed] [Google Scholar]
  18. Hornshaw M. P., McDermott J. R., Candy J. M., Lakey J. H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun. 1995 Sep 25;214(3):993–999. doi: 10.1006/bbrc.1995.2384. [DOI] [PubMed] [Google Scholar]
  19. Keshet G. I., Ovadia H., Taraboulos A., Gabizon R. Scrapie-infected mice and PrP knockout mice share abnormal localization and activity of neuronal nitric oxide synthase. J Neurochem. 1999 Mar;72(3):1224–1231. doi: 10.1046/j.1471-4159.1999.0721224.x. [DOI] [PubMed] [Google Scholar]
  20. Lee R. J., Wang S., Low P. S. Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim Biophys Acta. 1996 Jul 24;1312(3):237–242. doi: 10.1016/0167-4889(96)00041-9. [DOI] [PubMed] [Google Scholar]
  21. Liemann S., Glockshuber R. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry. 1999 Mar 16;38(11):3258–3267. doi: 10.1021/bi982714g. [DOI] [PubMed] [Google Scholar]
  22. McKenzie D., Bartz J., Mirwald J., Olander D., Marsh R., Aiken J. Reversibility of scrapie inactivation is enhanced by copper. J Biol Chem. 1998 Oct 2;273(40):25545–25547. doi: 10.1074/jbc.273.40.25545. [DOI] [PubMed] [Google Scholar]
  23. Miura T., Hori-i A., Mototani H., Takeuchi H. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry. 1999 Aug 31;38(35):11560–11569. doi: 10.1021/bi9909389. [DOI] [PubMed] [Google Scholar]
  24. Moore R. C., Lee I. Y., Silverman G. L., Harrison P. M., Strome R., Heinrich C., Karunaratne A., Pasternak S. H., Chishti M. A., Liang Y. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol. 1999 Oct 1;292(4):797–817. doi: 10.1006/jmbi.1999.3108. [DOI] [PubMed] [Google Scholar]
  25. Negro A., De Filippis V., Skaper S. D., James P., Sorgato M. C. The complete mature bovine prion protein highly expressed in Escherichia coli: biochemical and structural studies. FEBS Lett. 1997 Jul 28;412(2):359–364. doi: 10.1016/s0014-5793(97)00798-9. [DOI] [PubMed] [Google Scholar]
  26. Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., Mehlhorn I., Huang Z., Fletterick R. J., Cohen F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962–10966. doi: 10.1073/pnas.90.23.10962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pauly P. C., Harris D. A. Copper stimulates endocytosis of the prion protein. J Biol Chem. 1998 Dec 11;273(50):33107–33110. doi: 10.1074/jbc.273.50.33107. [DOI] [PubMed] [Google Scholar]
  28. Peisach J., Blumberg W. E. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys. 1974 Dec;165(2):691–708. doi: 10.1016/0003-9861(74)90298-7. [DOI] [PubMed] [Google Scholar]
  29. Prusiner S. B. Molecular biology of prion diseases. Science. 1991 Jun 14;252(5012):1515–1522. doi: 10.1126/science.1675487. [DOI] [PubMed] [Google Scholar]
  30. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  31. Prusiner S. B. Prions. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363–13383. doi: 10.1073/pnas.95.23.13363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Riek R., Hornemann S., Wider G., Billeter M., Glockshuber R., Wüthrich K. NMR structure of the mouse prion protein domain PrP(121-231). Nature. 1996 Jul 11;382(6587):180–182. doi: 10.1038/382180a0. [DOI] [PubMed] [Google Scholar]
  33. Shmerling D., Hegyi I., Fischer M., Blättler T., Brandner S., Götz J., Rülicke T., Flechsig E., Cozzio A., von Mering C. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell. 1998 Apr 17;93(2):203–214. doi: 10.1016/s0092-8674(00)81572-x. [DOI] [PubMed] [Google Scholar]
  34. Stahl N., Prusiner S. B. Prions and prion proteins. FASEB J. 1991 Oct;5(13):2799–2807. doi: 10.1096/fasebj.5.13.1916104. [DOI] [PubMed] [Google Scholar]
  35. Stöckel J., Safar J., Wallace A. C., Cohen F. E., Prusiner S. B. Prion protein selectively binds copper(II) ions. Biochemistry. 1998 May 19;37(20):7185–7193. doi: 10.1021/bi972827k. [DOI] [PubMed] [Google Scholar]
  36. Thompson A., White A. R., McLean C., Masters C. L., Cappai R., Barrow C. J. Amyloidogenicity and neurotoxicity of peptides corresponding to the helical regions of PrP(C). J Neurosci Res. 2000 Oct 15;62(2):293–301. doi: 10.1002/1097-4547(20001015)62:2<293::AID-JNR14>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  37. Viles J. H., Cohen F. E., Prusiner S. B., Goodin D. B., Wright P. E., Dyson H. J. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2042–2047. doi: 10.1073/pnas.96.5.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Waggoner D. J., Drisaldi B., Bartnikas T. B., Casareno R. L., Prohaska J. R., Gitlin J. D., Harris D. A. Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J Biol Chem. 2000 Mar 17;275(11):7455–7458. doi: 10.1074/jbc.275.11.7455. [DOI] [PubMed] [Google Scholar]
  39. Weissmann C., Aguzzi A. Perspectives: neurobiology. PrP's double causes trouble. Science. 1999 Oct 29;286(5441):914–915. doi: 10.1126/science.286.5441.914. [DOI] [PubMed] [Google Scholar]
  40. Weissmann C., Fischer M., Raeber A., Büeler H., Sailer A., Shmerling D., Rülicke T., Brandner S., Aguzzi A. The role of PrP in pathogenesis of experimental scrapie. Cold Spring Harb Symp Quant Biol. 1996;61:511–522. [PubMed] [Google Scholar]
  41. Whittal R. M., Ball H. L., Cohen F. E., Burlingame A. L., Prusiner S. B., Baldwin M. A. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci. 2000 Feb;9(2):332–343. doi: 10.1110/ps.9.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wong B. S., Wang H., Brown D. R., Jones I. M. Selective oxidation of methionine residues in prion proteins. Biochem Biophys Res Commun. 1999 Jun 7;259(2):352–355. doi: 10.1006/bbrc.1999.0802. [DOI] [PubMed] [Google Scholar]
  43. Zahn R., Liu A., Lührs T., Riek R., von Schroetter C., López García F., Billeter M., Calzolai L., Wider G., Wüthrich K. NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):145–150. doi: 10.1073/pnas.97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van Pouderoyen G., Andrew C. R., Loehr T. M., Sanders-Loehr J., Mazumdar S., Hill H. A., Canters G. W. Spectroscopic and mechanistic studies of type-1 and type-2 copper sites in Pseudomonas aeruginosa azurin as obtained by addition of external ligands to mutant His46Gly. Biochemistry. 1996 Feb 6;35(5):1397–1407. doi: 10.1021/bi951604w. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES